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1 Short Overview

The research collaborative workshop 25w5452 is the second structural effort made by the Women in Anal-
ysis Research Network to engage women junior mathematicians in this broad area in carefully designed,
cutting edge research projects. The main goal of this event was to further develop WoAN as a structured
international network of women analysts as a mean of: establishing effective collaboration groups, devel-
oping new interdisciplinary research activities, training of junior mathematicians, increasing visibility and
professional connections of participants, offering an avenue for informed career development pertinent to
women in analysis, and creating a database of information and professional opportunities relevant to women
in this mathematical field. Irina Mitrea (Temple University), Donatella Danielli (Arizona State University),
and Maŕıa Soria Carro (Rutgers University) served as organizers and the workshop hosted the following
collaborative research teams:

1. Harmonic Analysis

2. Linear and Nonlinear Boundary Problems

3. Nonlinear Dispersive Equations

4. Several Complex Variables

5. Scattering Theory

Each team was led by internationally recognized women experts in these fields. Scientific activities at
the workshop included introductory lectures and discussions, collaborative research time, poster and short
talk sessions for junior participants, and wrap-up sessions in which teams reported on their progress. The
workshop schedule also included a professional development session. Below we will elaborate on the scientific
content of the workshop and the progress registered by the various collaboration teams.

2 Harmonic Analysis

The Harmonic Analysis Group consisted of: A. Čolović, G. Dafni, M. C. Pereyra, M. Ramirez, S. Sandberg,
K. Taylor, and L. Ward.

The general area of Harmonic Analysis revolves around the study of classes of functions and operators,
with emphasis on the quantitative properties of these objects, including boundedness, integrability, decay
estimates, existence of gradients, and relations of curvature. Geometric measure theory provides a framework
to describe structural properties of measures and sets, including density, rectifiability, and dimension. The
group approached several questions at the overlap of harmonic analysis and geometric measure theory:

(1) non-linear two projection and Besicovitch theorems, and could Peter Jones β numbers help?,

(2) boundedness and compactness of commutators of the Cauchy integral on chord-arc curves,

(3) boundedness of the strong maximal function on strong BMO.
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The challenge for the Harmonic Analysis group was to find areas of intersection in the participants’
interests and to find problem(s) that would have a geometric flavor, involve some functional analysis, and
have a possible dyadic optic.

What the Harmonic Analysis Group did in BIRS and afterwards

• The first group meeting at BIRS focused on problems that Krystal Taylor proposed (see Section 2.1)
and it sparked our conversations for the rest of the week. Discussions on the notions of rectifiability
and purely unrectifiable sets (see Section 2.1.1), lead the group to consider Peter Jones’ β numbers,
see Section 2.1.3, introduced in his solution to the analyst’s Traveling Salesman Problem in R2 [19].
The β numbers can be used to characterize a class of chord-arc curves [6]. This sparked the group’s
curiosity, as it connected to Maricela Ramirez’ work for the Cauchy integral on chord-arc curves, see
Section 2.2.

• On the second group meeting, Maricela presented a dry run for her talk in the parallel sessions. Further
questions arose, for example can we study compactness of commutators of the Cauchy integral on chord-
arc or even Alhfors-regular curves and functions on VMO or some analogous space? This connected
to work of L. Ward [20] and C. Pereyra [18], see Section 2.2.1, and to subjects close to Ana’s and G.
Dafni’s areas of interest that we discussed in our fourth meeting, including endpoint results involving
the Hardy space H1 and the space of bounded mean oscillation BMO.

• In the third group meeting, Ana presented her thesis work on Hankel operators and composition of
dyadic paraproducts, with connections to some of the problems proposed by Cristina Pereyra in the
plenary lecture, and overlap with work done by Galia Dafni’s student on multiparameter paraproducts.
On our last group meeting, Lesley Ward explained in more detail one of the problems she had proposed
in the plenary lecture, involving the strong maximal operator, and she showed us some interesting
atomic measures [16, 15], see Section 2.2.2. Maricela and Ana prepared and delivered the wrap-up
remarks for our group.

• The Harmonic Analysis group created a Dropbox to store papers/monographs that we think could be
of interest to the group. Galia Dafni identified a 2002 monograph by Hervé Pajot [27] that touches on
many of the themes we discussed and would like to explore in more depth: Peter Jones β numbers,
Menger curvature, Cauchy integral, and analytic capacity. The Dropbox library is growing. Addi-
tionally the group has a joint overleaf, and met in zoom (a multicontinental meeting: North America,
Australia and Europe) a month after the program ended, with plans to meet again early in July.

2.1 Rectifiability, Projection Theorems, and β Numbers

Rectifiability is a key concept that describes how much a set resembles a curve, see Section 2.1.1. Projections
are used throughout mathematics, and are used in harmonic analysis to detect geometric and structural
information about a set. There are many important projection theorems that are easy to state, including
the two projection theorem [30]. A deeper problem related to projection theory is the Favard length problem,
which concerns the rate of decay of the average projection length of a purely unrectifiable set, see Section 2.1.2.
Tao proved both a quantitative two projection theorem and a quantitative Besicovitch theorem (which relates
to the Favard problem) [29].

2.1.1 Four-corner Cantor Sets and Rectifiability

Rectifiability of a set refers to the extent to which one can fit countable union of Lipshitz curves onto the
set. As an example of a purely unrectifiable set (one such that its intersection with any Lipschitz graph has
zero length) we consider the four-corner Cantor set (also called Garnett’s set), which is defined iteratively.
Chord-arc curves are rectifiable, see 2.2.1.

Four-corner Cantor sets are examples of fractal sets, whose properties can often be measured using the
Hausdorff measure. Hausdorff measure gives one a way to quantify fractal sets. Hausdorff measures do not,
however, provide a way to determine whether a set is rectifiable or not. The four-corner Cantor set is purely
unrectifiable (by the two-projection theorem below). A line set in a plane is rectifiable, but both of these
sets have positive Hausdorff measure. To understand the way we can measure rectifiability of sets, the group
looked towards projection theorems in geometric measure theory.
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2.1.2 Projection Theorems

One can differentiate between rectifiable and unrectifiable sets by the way they behave under orthogonal
projections. Let Πθ : R2 → R, for 0 ≤ θ < π, be the orthogonal projection defined by:

Πθ(x, y) := (x, y) · (cos θ, sin θ).

The two-projection theorem states ([29, Prop. 1.16]: A compact set in the plane that has two distinct
orthogonal projections of zero measure must be purely unrectifiable. One common line of investigation
identified was: Can we prove an analogue of the two-projection theorem for nonlinear projection
operators?

Besicovitch’s projection theorem states that for a purely unrectifiable compact set E ⊂ R2, with a positive
Hausdorff measure, then |Πθ(E)| = 0 for almost every θ. In particular, the four-corner Cantor set has zero-
length projections for almost every θ. The common line of investigation identified in this direction was: Is
there a Besicovitch’s theorem for non-linear projections? A version for a particular family of curve
projections was shown in [14].

The Favard length is the average of the lengths of the orthogonal projections, namely

Fav(E) :=
1

π

∫ π

0

|Πθ(E)|dθ.

Purely unrectifiable compact sets must have zero Favard length. The Favard length of a set E in the unit
square has a probabilistic interpretation: up to a constant factor, it is the probability that the “Buffon’s
needle,” a long line segment dropped at random, hits E, [7]. For curved projections of sets of finite length
and nearly purely unrectifiable, their Favard curved length is very small [14].

Can we say something about the probability that a curved Buffon’s needle hits E?

2.1.3 Rectifiability and Beta Numbers

We now turn towards another way to quantify rectifiability of sets, namely β numbers. The traveling
salesman problem asks whether given a set E, we can find a curve that contains the set. The analyst’s
traveling salesman problem asks whether we can find a rectifiable curve Γ that contains the set and if so,
what the length of the curve would be. For sets in R2 the problem was solved by Peter Jones [?], who found
that the length of the best curve can be estimated using a sum of an infinite series. He developed the concept
of β numbers that measure how close the set is to being a line at different scales. To capture the notion of
different scales, one can use dyadic cubes.

The β number of a set E with respect to the cube Q is given by

β(E,Q) :=
1

diam(Q)
inf
L

sup{dist(z, L) : z ∈ 3Q ∩ E},

where the infimum is taken over all the lines L that intersect Q.
Peter Jones then proved that the curve of the smallest length containing E ⊂ R2 has length

l(Γ) ≈ diam(E) +
∑
Q

β(E,Q)2diam(Q).

If such a curve exists, the sum on the right will converge. One of the goals of our group was to understand
how these two notions of rectifiability can be reconciled. To familiarize ourselves with these definitions, we
worked out the β numbers for the four-corner Cantor set.

2.2 Boundedness of Specific Operators

Since the boundedness of operators is at the core of harmonic analysis, our group discussed possible directions
for studying the boundedness of the commutator of the Cauchy integral and the strong maximal operator,
and provided brief overviews of what an investigation into these problems could involve. Before diving into
the specific problems discussed, we define the operators under consideration.

Let Γ ⊆ C be a rectifiable, orientable curve that separates the complex plane into two connected compo-

nents. The boundary-to-domain Cauchy integral is defined for functions f ∈ L1
(

Γ, dζ
1+|ζ|

)
by

CΓf(z) :=
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ for all z ∈ C \ Γ.
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One can then define the corresponding truncated, maximal, and principal value operators as usual. Given a
singular integral operator T and a function b, the commutator of T with b is defined as follows:

[b, T ](f) := bT (f)− T (bf).

The strong maximal function in the multi-parameter setting associated with a measure µ is given by

Ms,µf(x) := sup
R : x∈R

1

µ(R)

∫
R

|f(y)| dµ(y),

where the supremum is taken over all axis-parallel rectangles R containing x.

2.2.1 The Commutator of the Cauchy Integral

Some of our group members have worked closely with the Cauchy integral. Namely, Cristina Pereyra and
collaborators (see [18]) have studied related problems, while Maricela Ramirez worked on proving the uniform
boundedness of the truncated Cauchy operator on chord-arc curves. Lesley Ward, along with collaborators,
established the boundedness and compactness of the commutator of CΓ, the Cauchy integral on Lipschitz
curves. In particular, [20] shows that for real-valued locally integrable functions b, the commutator [b, CΓ]
is bounded if and only if b ∈ BMO(R), the John-Nirenberg space of functions of bounded mean oscillation.
Additionally, for b ∈ BMO(R), the operator [b, CΓ] is compact if and only if b is in VMO(R), the space of
functions of vanishing mean oscillation (sometimes denoted CMO(R)).

These results were established specifically for the case where the Cauchy integral is evaluated on a
Lipschitz graph. With the goal of finding an interface between the group members’ areas of focus, a natural
question arose: Can we extend the boundedness and compactness results discussed above to the
setting where the Cauchy integral is defined on a chord-arc curve?

2.2.2 The Strong Maximal function

In both [16] and [15], Lesley and her collaborator Guillermo Flores studied the boundedness of the strong
maximal function. Of particular interest was a construction of an atomic measure µ, i.e., a measure supported
on a countable set of points, called atoms, for whichMs,µ is unbounded on Lp(µ). The group went over this
construction in detail, leading to a potential future direction: Characterize the measures µ for which
Ms,µ is bounded on Lp(µ) for all, none, or some p ∈ (1,∞).

Since Galia Dafni specializes in different function spaces, the group discussed the multi-parameter ana-
logue of the BMO space, the strong BMO space (also known as bmo or “little BMO”). This space is defined
using averages over axis-parallel rectangles as opposed to dyadic cubes in the classical setting. This connec-
tion is relevant, as both the strong maximal function and BMO space naturally arise in the multi-parameter
setting. This led to the following open question: Is the strong maximal function Ms,µ bounded on
strong BMO? These discussions highlighted promising directions at the intersection of operator theory,
function spaces, and geometric measure theory.

3 Linear and Nonlinear Boundary Value Problems

Participants: Shalmali Bandyopadhyay (UT Martin, TN - virtual), Maya Chhetri (UNC Greensboro, NC),
Briceyda B. Delgado (Infotec, Mexico), Melissa Glass (UNC Greensboro, NC), Nsoki Mavinga (Swarth-
more College, PA), Maria Amarakristi Onyido (Northern Illinois University, IL), Diana Sanchez (National
University of Colombia, Manizales, Colombia)

There has been a significant amount of interests in the study of nonlinear boundary value problems,
especially nonlinear elliptic problems, since Bernstein’s pioneering work in nonlinear elliptic equations in
1906 and Leray’s work on hydrodynamical problems in 1933. Study of such problems is important for
the understanding and modeling of nonlinear processes such as chemical, biological or ecological processes.
The qualitative and quantitative study of these equations is essential to better understand and model such
processes. The focus of the group was to introduce qualitative study of the questions of (a) existence, (b)
nonexistence, (c) multiplicity, and (d) properties of solutions of some model problems which describe the
long-term behavior of the corresponding time dependent parabolic problems.

4



3.1 Workshop Activities

This group focused on understanding one of the widely used tools called the method of sub- and supersolutions
for second order elliptic problems with nonlinear boundary conditions of the form

−∆u = f(x, u) in Ω

∂u

∂η
= g(x, u) on ∂Ω

 (3.1)

where Ω ⊂ RN is a bounded domain with smooth boundary if N ≥ 2 and a bounded open interval if
N = 1, η is the outward normal derivative to the boundary ∂Ω and, ∆ is the usual Laplacian operator. The
nonlinearities f : Ω× R→ R and g : ∂Ω× R→ R are continuous functions.

In a nutshell, it is expected that if the problem has a subsolution u and a supersolution u of the problem
above such that they are ordered, that is, u ≤ u, then:

Existence there exists a (weak) solution u of the problem satisfying u ≤ u ≤ u.

Maximal/minimal solution there exist a minimal and a maximal solution u∗ and u∗, respectively such
that if u is any solution satisfying u ≤ u ≤ u then u∗ ≤ u ≤ u∗.

The literature generally deals with the question of Existence since in most cases, this is sufficient. How-
ever, the existence of both Maximal and Minimal solution, when they exist, provides more qualitative
information about the solution, and is therefore an area of active investigation. In this group, we have
focused on both the questions for various Elliptic problems with nonlinear boundary conditions when
the subsolutions and supersolutions are not necessarily bounded.

3.2 Group work

Junior members had different level of exposure to the topic. Some of them had already co-authored articles
with at least one or both co-leaders of the group, some were only the users of this tool in their own research but
have not had opportunity to think about the method itself, and some had very brief and topical knowledge.
To make sure everyone is on the same page, we started the discussion on the article [4] which deals with the
case f ≡ 0, that is

−∆u+ u = 0 in Ω

∂u

∂η
= g(x, u) on ∂Ω ,

 (3.2)

we discussed the functional framework necessary to deal with the weak solution and the importance of the
trace operator due to the presence of the nonlinearity g on the boundary ∂Ω.

• if g is monotone, then a monotone iteration method yields the existence of a maximal and a minimal
solution right away. Such monotone iteration technique is useful for numerical implementation.

• if g is not monotone, then a strategy has been to first prove the existence of a solution, then use the
solution obtained to apply Zorn’s lemma to find a maximal and a minimal solution.

Group activities:

• First part of the workshop at BIRS was spent on understanding the tools necessary to deal with the
non-monotone case for the problem (3.2) and connecting with the problem (3.1).

• Then the group discussed several interesting applications, in particular, what are the sufficient condi-
tions on the nonlinearity or nonlinearities that can guarantee the existence of an ordered pair of sub-
and supersolution to guarantee a solution between them.

• Junior members were also introduced to the problems involving a bifurcation parameter multiplied
nonlinearity and how to analyze the number of solutions with respect to the parameter depending on
the behavior of the nonlinearities.

• One of the junior members also demonstrated the use of numerical experiments in validating the theory
developed via Matlab.
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3.3 Proposed problem and progress

• A subgroup has settled on extending the result to the coupled system of equations with coupled
nonlinear boundary conditions of the form

−∆u1 = f1(x, u1, u2) in Ω ,
−∆u2 = f2(x, u1, u2) in Ω ,

∂u1

∂η = g1(x, u1, u2) on ∂Ω,
∂u2

∂η = g2(x, u1, u2) on ∂Ω .

 (3.3)

These members have been meeting weekly (virtually) since returning from BIRS with the goal of
wrapping up the manuscript over the summer. The plan is to have both the theoretical and numerical
component in the work. The strategy is to combine the theory developed in [5] to the coupled system
of equations case corresponding to the problem (3.2) with two preprints by N. Mavinga [22, 23] dealing
with the problem (3.1). The challenge is to overcome the difficulty posed by the coupling in the
differential equation through the nonlinearities in the domain Ω as well as on the boundary ∂Ω.

• One of the doctoral students will be submitting her thesis this summer with the plan to defend in the
fall semester and did not join the above project. However, she is already working with two separate
projects with each of the co-leaders, as part of her thesis and one of them involve the nonlinear boundary
condition. She plans to work on a BIRS related project once the thesis is completed.

• The most junior participant has also began working on her thesis projects involving problems of the
form (3.1) from the mathematical ecology point of view. She will be joining some members of the
group on a project as a result of this workshop during the fall semester.

3.3.1 Some Testimonials from junior participants

• The combination of strengthened theoretical foundation, active collaboration, and clear deliverables
makes this one of the most productive workshop experiences I’ve had. I’m particularly excited about
contributing the computational component to our team’s theoretical work, as this integration of numer-
ical and analytical approaches often leads to the most robust and complete research outcomes.

• The Workshop on Analysis WoAN was an amazing experience; the opportunity to work in an inspiring
environment was fantastic. In Mexico, there are very few women mathematicians working in analysis,
so to participate in a full research week hearing about non-linear pde’s, scattering theory, free boundary
problems, harmonic and complex analysis, among others, was a very fruitful and motivating experience.

More than the results that can be obtained as a product of this workshop, I value and am very grateful
for the opportunity provided by my team leaders (Maya and Nsoki), the knowledge shared, the constant
support, and patience. Thanks also to the workshop organizers, Irina, Donatella, and Maria; without
them, all this experience and learning would not have been possible.

• Attending the Women in Analysis conference was a wonderful learning experience. I was in the Linear
and Nonlinear Boundary Value Problems group. Our group worked together well and as a result we
were very productive. There were varying levels of experience within our group so we spent a little over
a day going over definitions, theorems, and the techniques of the proofs. The leaders were patient and
made sure we were all grasping the concepts before we moved on.

• I consider that this workshop has been an excellent opportunity to establish connections with my peers
and mentors. They taught me how valuable it is to work as a team to develop any skill and the
importance of working individually to assimilate some concepts. Understanding something means being
able to teach it to someone else and having them understand it. For this reason, I would like to share
what I have learned with new members. I would like to organize this type of workshop for women in
Colombia.
This experience has changed the way I do research and has also helped me develop social skills that I
thought I did not have. Thanks to my mentors for inviting me to this workshop, I have learned many
things about mathematics and about life. Thanks to this opportunity you gave me, I realized that I can
be more independent and that I can do things I thought I could not. Thank you very much.
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4 Nonlinear Dispersive Equations

Group Leaders: Nataša Pavlović, Gigliola Staffilani
Group Members: Iryna Petrenko, Jia Shi, Diana Son, Maja Tascović, Katja Vassilev, Luisa Velasco

This portion of the report summarizes the discussions and progress of various projects considered by the
nonlinear dispersive equations group. The starting point of our discussions was three general families of
problems suggested by the group leaders:

1. Fluid and water wave equations

2. Dispersive methods in the context of kinetic equations

3. Integrability in the context of kinetic equations

We include a complete list of these problems in Section 4.1. In addition, our discussions of these problems
led us to propose several new problems, recorded in Section 4.2. For the workshop, we focused primarily on
P 1.3 (and related) and P 2.1 from those lists, so that our primary focus became:

• Establishing blow up of solutions to dispersive equations using implosion of solutions to fluid equations.

• Using dispersive methods in the context of kinetic equations to establish well-posedness of initial value
problems.

For the first point, we were able to make direct computations for several dispersive systems leading to
the next steps, as well as show that certain dispersive systems are not suited to the current techniques. For
the second point, we discussed the literature to see the advantages of the proposed technique.

4.1 Initial Problems

4.1.1 Fluid and water wave equations

In the context of fluid and water wave equations we propose the following problems, each of which with a
connection to a related phenomenon identified in the context of some dispersive equations:

P 1.1 Understanding growth of Sobolev norms for the 2D SQG (Surface quasi-geostrophic waves) [21].

P 1.2 Establish Strichartz estimates for solutions linked to the water wave problem, based on the work [28].

P 1.3 Establish blow up for complex variable dispersive equations via self similar profiles in fluid equations ,
which has been done for NLS and complex wave equations [9, 10]. We can attempt the same technique
for complex supercritical gKdV or ZK equation.

4.1.2 Dispersive methods in the context of kinetic equations

Motivated by the works of Chen-Denlinger-Pavlović [11, 12] on using ideas and methods from nonlinear
dispersive equations in the context of Boltzmann equation, we propose the following problem:

P 2.1 Well-posedness analysis of a 4-wave kinetic equation on R3 based on transforming it to a dispersive
equation via the inverse Wigner transform. For a formulation of the 4-wave kinetic equation see the
recent work of Ampatzoglou [1].

4.1.3 Integrability in the context of kinetic equations

Motivated by the works of Mendelson, Nahmod, Pavlović, Rosenzweig and Staffilani [24, 25] on integrability
of equations that appear in a context of derivation of NLS, we propose the following problem:

P 3.1 Investigating whether the equation obtained by the following process is integrable.

(a) Start with the GP (Gross-Pitaevskii) hierarchy corresponding to the 1D cubic NLS (see [24] for
a formulation of the GP hierarchy). This hierarchy is integrable according to the works [24] and
[25].

(b) Apply the Wigner transform to the equation under the previous step to obtain a kinetic-looking
equation. For a basic info on using Wigner transform to connect kinetic and dispersive equations,
see [11].

(c) Is this new equation integrable? Can we construct infinitely many conservation laws for this
equation?
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4.2 Additional Problems

Discussions on the problems in Section 4.1 led us to additionally propose the following questions:

P 4.1 Inspired by the blowup result for the NLS [10], in addition to P 1.3 can one lift implosion from the
NLS to the GP hierarchy? See the work [13] for blowup in GP hierarches.

– The GP hierarchy is an infinite, linear, coupled hierarchy given as follows

i∂tγ
(k) + (∆xk

−∆x′
k
)γ(k) =

k∑
j=1

Bj,k+1γ
(k+1),

where the notation xk = (x1, x2, . . . , xk) and γ(k) = γ(k)(t, xk, x
′
k) has been used. Note that

γ(k) =
∏k
j=1 u(t, xj)u(t, x′j) is a solution of the GP hierarchy if u solves the NLS.

– To show blowup, we would begin by showing it for a factorized solution (this may be immediate)

– For other solutions, one can use the de Finetti approach.

P 4.2 Also inspired by P 1.3, can one provide an interpretation of NLS implosion at the level of the N−body
hierarchy?

P 4.3 Also inspired by P 1.3, can one establish implosion of other dispersive equations? We considered:

label = () Modified Zakharov–Kuznetsov equation (This was looked at by Luisa and Katja)

∂tu+ ∂x∆u = |u|2∂xu, (t, x, y) ∈ R× R× R. (4.4)

This system is anisotropic (one dimension is favored). Therefore, in dimension d = 2 it is more
useful to consider the symmetrized system:

∂tu+ (∂3
x + ∂3

y)u = |u|2(∂x + ∂y)u, (t, x, y) ∈ R× R× R. (4.5)

lbbel = () Biharmonic NLS (This was looked at by Jia, Iryna, and Diana)

∂tu+ ∆2u = |u|p−1u, (t, x) ∈ R× Rd. (4.6)

lcbel = () Davey Stewartson system{
i∂tu+ σ1∂

2
x1
u+ ∂2

x2
u = σ2|u|2u+ (∂x1

ϕ)u,

α∂2
x1
ϕ+ ∂2

x2
ϕ = −γ∂x1

(|u|2),
(t, x) ∈ R× R2, (4.7)

where σ1, σ2 ∈ {±1}.
ldbel = () Hyperbolic NLS (This was looked at by Gigliola, Maja, and Natasa)

i∂tu+ ∆xu−∆yu = |u|p−1u, (t, x, y) ∈ R× Rn × Rm. (4.8)

lebel = () Generalized KdV

∂tu+ ∂3
xu = ∂x(uk). (4.9)

Remark: We note that to perform the Madelung transformation we must have a complex valued
solution u. Thus, in order to attempt this program for real-valued equations, we would need some
kind of complexification of the solution.

4.4 Also inspired by P 1.3, can one extend the concept of implosion for 4-WKE from blowup of NLS? We
noted that this is likely not possible since the derivation of the WKE uses random data and the blowup
is very unstable.
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4.3 Blow up of Dispersive Equations

Former work of Guderley [17], Merle-Raphaël-Rodnianski-Szeftel [26], and Buckmaster–Cao-Labora–Gomez-
Serrano [8] established self-similar blowup for radial Euler, Navier-Stokes and some supercritical defocusing
NLS equations. More recently, Cao-Labora–Gomez-Serrano–Shi-Staffilani extended these results to the non-
radial case [9], [10]. This last work focuses on transforming the dispersive NLS system into a fluid equation.
Together, the strategy of all of these works may be summarized as:

• Step 1: For complex-valued solution u to a dispersive equation, perform Madelung transformation

u(t, x) =
√
ρ(t, x)eiφ(t,x),

where ρ represents the density and ∇φ = v represents the velocity.

• Step 2: Write equations for ρt, vt, yielding “compressible Euler + small perturbation”.

• Step 3: Write the solution in self-similar coordinates for α, γ constants:

ρ(t, x) =
1

(T − t)α
ρ

(
x

(t− T )γ

)
,

and similarly for v. In the radial case this yields a new system of ODEs.

• Step 4: Going from (t, x)→ (s, y) for self-similar coordinates for Euler (note that s ∼ log(T − t) and
y ∼ es · x), blowup corresponds to s → ∞. One may then separate and identify the “small terms”,
which should carry exponential decay in s. This will correspond to some restrictions for the chosen
constants. For the ODE, one may then use a phase portrait to identify stationary smooth solutions U
(corresponding to the velocity field) and S (corresponding to the density).

• Step 5: Once one has stationary solutions, consider the “small perturbation” terms and show that
one still has a solution which blows up. If one considers the nonradial case, one additionally would
then write (ρ, v) = (S,U)+η(t, x), where η is nonradial. This yields an equation for η, which one must
deal with.

Taking this general strategy, we looked at a variety of dispersive systems below, hoping to adapt this
framework:

4.4 Modified ZK (4.5)

• Performed Madelung transform and self-similar change of variables; however, due to the odd number
of derivatives, we were unable to rewrite the resulting equation in terms of u = ∇φ.

• After simplifying system by dropping all non-dominant terms, what remained was still a PDE rather
than an autonomous ODE.

Conclusion: Due to the third order derivatives in the ZK equation, we cannot apply this program to
this equation to obtain blow-up. Different techniques must be applied.

4.5 Biharmonic NLS (4.6)

• Performed Madelung transformation and self-similar change of variables to obtain the corresponding
autonomous ODE system.

0 = λ1W̄ −
λ2

3
W̄ − λ2∂ξW̄ + 4W̄ 3(∂ξW̄ +

1

3
W̄ )− 4V̄ 3(∂ξV̄ +

1

3
V̄ )

0 = λ1V̄ −
λ2

3
V̄ − λ2∂ξV̄ +

3

2
(p− 1)V̄ W̄ 2(∂ξV̄ +

1

3
W̄ ) + 4W̄ 3(∂ξV̄ +

1

3
V̄ )

(4.10)

• Studied this ODE via phase portraits which display the slope fields in the focusing and defocusing
cases shown in the figures below.

Next step: Obtain smooth solutions, possibly with computer assisted proof.
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Defocusing Focusing

4.6 Hyperbolic NLS (4.8)

• No blow-up results are available for this equation and

H(u) =

∫ (
|∇xu|2 − |∇yu|2 +

2

p+ 1
|u|p+1

)
dxdy

is conserved but not with definite sign.

• Since the Hyperbolic NLS bears such similarity to the NLS, some simplfiying assumptions are first
considered: Assume x ∈ Rd and y ∈ R. Then use the existing blow-up result for the NLS in Rd,
discussed above, by rescaling the solution u “faster” in x and “slower” in y to extend the result to the
Hyperbolic NLS.

4.7 Dispersive methods in the context of kinetic equations

Inhomogeneous kinetic equations broadly take the form

∂tf + v · ∇xf = Q(f), (KE)

where Q(f) is termed the collision operator. Such equations arise as the evolution of statistical behavior
of a gas of particles or a wave system, where f represents, in some sense, the density of particles or waves.
In the particle case, it’s the well known Boltzmann equation for which local well-posedness was shown by
Chen-Denlinger-Pavlović [11, 12] using the inverse Wigner Transform W−1, so that one obtains{

W−1(f)(x, x′) := u(x, x′),

i∂tu+ ∆xu−∆x′u = B(u),
(4.11)

for some nonlinear term B. This allows dispersive techniques to be accessible.
More recently, local-well posedness has been established for wave kinetic equations, for instance [1, 2].

These results do not employ the Wigner Transform, which would hopefully allow for a well-posedness result
in L2 based spaces rather than the L∞ and L1 results of the previous papers.

4.8 Final Remarks

Three members of our group — Jia, Diana, and Iryna — participated fully remotely, yet they were highly
engaged in the brainstorming sessions and even organized their own meetings to continue the discussions.
The group as a whole collaborated exceptionally well, and we made significant progress.
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As a group we would like to express our sincere gratitude to BIRS for the outstanding hospitality.
In particular, having the opportunity to use the spectacular Kinnear Centre—with its stunning mountain
views—was truly remarkable.

As it happens, all members of our group are based in the United States, where meetings of this kind are
no longer funded. This made BIRS’s support all the more meaningful, and we are deeply appreciative.

5 Scattering Theory

There were seven participants in the group on Scattering Theory: Emilia Bl̊asten, LUT University Fioralba
Cakoni, Rutgers University, Anastasia Kisil, University of Manchester, Shari Moskow, Drexel University,
Fatma Terzioglu, NC State University, Jingni Xiao, Drexel University, and Dana Zilberberg, Rutgers Uni-
versity. Most of us have a background in inverse problems, some were new to the topic, and nobody knew
everything. So the group organized meetings in the following way: a) first, everyone gave an ex tempore
presentation of their recent work in scattering theory, and then b) described some of the interesting open
problems in that topic which we believe requires new ideas. We structure this summary in the same way,
introducing the various topics very briefly.

5.1 Topics

5.1.1 Shape determination in scattering

The simplest problem that contains a core piece of scattering theory is the source scattering problem:

(∆ + k2)us = f in Rn (5.12)

where us must satisfy the Sommerfeld radiation condition and f is the source force term. The solution has
the asymptotics

us(x) ∼ Φ(x)ϕ(x̂), x→∞, x̂ = x/x (5.13)

where ϕ is the far-field pattern of the scattered wave us and Φ is the outgoing fundamental solution to
(∆ + k2). In this simple case it turns out that

ϕ(x̂) = cn

∫
f(y)e−ikx̂·ydy = f̂(kx̂) (5.14)

The hope is that given k fixed, one could deduce something useful about the unknown scatterer f from its
far-field pattern f̂(kx̂) on x̂ = 1.

Previous work has shown that if f = χP g where g is a smooth and positive function and P a convex
polyhedron, then ϕ uniquely determines P and the values of g at the corner points of P . An open question
is to which degree the same holds true for non-convex polyhedron, even in two dimensions.

5.1.2 Born series and new estimates

In potential scattering, given an incident wave ui, the scattered wave for the Helmholtz equation (∆ +
k2n(x))u = 0 with refractive index n(x) is us = u− ui which can be solved from the Lippmann–Schwinger
equation

u(x) = ui(x) + k2

∫
Rn

Φ(x− y)
(
n(y)− 1

)
u(y)dy (5.15)

where Φ is the outgoing fundamental solution to (∆ + k2). Iterating (5.15) gives the Born series.
As x→∞, we have asymptotically

us(x) ∼ Φ(x)ϕ(x̂), x̂ = x/x (5.16)

and ϕ is called the far-field pattern (or scattering amplitude). Doing asymptotic analysis of the Born series
gives a relation between the potential m(x) = n(x)− 1 and the far-field pattern ϕ:

ϕ = K1m+K2m⊗m+ . . . (5.17)

Writing an ansatz m = L1ϕ+L2ϕ⊗ϕ+ . . . we can study the operators Li and investigate the convergence of
ϕ 7→ m. Classically Sobolev spaces have been used to make this formal. However it is interesting to look at
whether recent Wasserstein-type estimates and methods could bring improvement. These methods capture
inherent geometry better than Sobolev spaces.
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5.1.3 Embedding formulas

θi

x̂

An incident plane-wave with direction θi interacts with polyhedral obstacles producing a scattered wave
whose far-field pattern ϕ we observe in direction x̂. Given the far-field patterns for several incident directions
θi ∈ {α1, . . . , αm}, we can calculate an embedding formula for the far-field that would be produced with a
new incident wave direction α

ϕα(x̂) = R
(
x̂, α,

(
αj , ϕαj

)
j
, geometry

)
(5.18)

The rational function R is computed from the a-priori given incident directions and geometry by solving a
linear system. The benefit is that this system does not need to be solved again for every new direction α,
thus providing speedups in computing the fundamental object in scattering: the far-field pattern.

5.1.4 Interior transmission eigenvalue problem

An incident wave ui of wave number k that does not cause scattering from an inhomogeneous refractive
index n will be equal to the total field u outside of the scatterer Ω := x ∈n n(x) 6= 1. This leads to a type
of eigenvalue problem in Ω, written below for w = ui and v = u, that can be studied even without reference
to an underlying scattering situation.

We say that the number k is an interior transmission eigenvalue (ITE) if there are non-trivial w, v
satisfying 

(∆ + k2n)v = 0, Ω,

(∆ + k2)w = 0, Ω,

v − w = 0, ∂Ω,

∂νv − ∂νw = 0, ∂Ω.

(5.19)

This eigenvalue problem is extremely challenging, since it is not elliptic or even self-adjoint. Many of the
typical research questions involve the existence, discreteness and accumulation points of ITE’s, Weyl laws,
completeness of eigenfunctions, and other questions from spectral theory.

A major open question related to this problem is what happens when n − 1 changes sign near the
boundary. This is difficult to study because having n > 1 on part of the boundary and n < 1 on another
prevents looking at the simplest case: radially symmetric solutions. However, if one sets

n(x) = 1 +
1

2
sin

(
1

1− x

)
, x < 1 (5.20)

then one can hope to study the simpler radially symmetric case with varying sign at the boundary but with
a more singular differential equation in the radial variable.

5.1.5 Homogenisation

Homogenisation studies what happens to periodic structures in partial differential equations as the funda-
mental cell size ε tends to zero.

If we apply homogenisation to the interior transmission problem in a domain Ω, we get the equation

(∆ + k2n(x/ε))
1

n(x/ε)− 1
(∆ + k2)uε = 0 in Ω, (5.21)

where n is the refractive index of waves of wave number k ∈+.
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The point of homogenisation is that by letting ε→ 0, we get a simpler equation with solution u0 which will
give information about the “large scale” behaviour of the original solution uε, ε 6= 0. Also, the transmission
eigenvalues of the two problems are related:

k2
ε = k2

0 + εδ(1) + o(ε), ε→ 0. (5.22)

To analyse the first order correction δ(1) we need to do asymptotic analysis for uε, and get

uε ≈ u0 + ε2χ(x/ε)(∆ + k2)u0 + εθε (5.23)

where χ solves a Poisson equation with periodic boundary conditions and source term being a transformation
of the refractive index. Lastly, θε is a term coming from the mismatch between the lattice ε and the boundary
∂Ω.

The goal is to find the limit θ0 . This shows in the first term asymptotic δ(1) of the transmission eigenvalue.
It involves the boundary effect on the eigenfunctions at the order ε and function on micro-properties of the
highly oscillating media. We can determine a few transmission eigenvalues, assuming that the shape is
known, the hope is to determine the homogenised n from k2

0 and information on the microstructure from
δ(1).

5.1.6 Compton camera

Scattering can also lead to non-elliptic problems, or problems outside of partial differential equations. One
topic we briefly discussed was the inverse problem for Compton cameras. The imaging target emits gamma
rays which are detected in a sensor that can be moved around the target. Due to the physical processes
involved in detecting the rays we do not have the exact incidence direction of the ray, but instead the location
it hits the sensor and a (hollow) cone with apex there that contains the location of the ray’s source. The
measurements are additive. So the inverse problem is to determine an unknown function f(x), x ∈3 from
integrals over all cones parameterised by their apex y ∈ Γ, their axis direction β, and their opening angle
θ. With suitable geometric conditions on the measurement locations, this cone-transformation of f can be
reduced to a Radon transformation and thus inverted.

5.2 Conclusion

We were a large group with several senior members. The workshop provided a much needed environment
for us to meet and share the latest details from each of our research fields and discuss future directions of
investigation. Several collaborations emerged with the goal of tackling open problems presented in this short
summary.

6 Several Complex Variables

The Complex Analysis group consisted of four members: Andreea Nicoara and Irina Markina served as the
group leaders, while Caterina Stoppato and Elena Luca participated as members, with the latter joining
remotely via an online platform. The research interests of A. Nicoara and I. Markina intersect in the field of
geometry of manifolds in several complex variables. C. Stoppato has been increasingly engaging with complex
analysis, transitioning from her background in quaternionic analysis. E. Luca, the most junior participant,
continues to develop her growing interest in the area. During the introductory session, A. Nicoara presented
three potential problems for group discussion:

Problem 1:

Construct a counterexample to the existence of sup norm estimates for (p.q) forms on a smooth
pseudoconvex domain if the q-type is infinite as the Sibony counterexample for (0, 1) forms does
not generalize.

Problem 2:

Prove a Diederich-Fornæss type theorem under a more general condition than pseudoconvexity
such as there exist k ∈ and ε > 0 such that in a neighborhood of 0 the Levi form satisfies

L(w,w) ≥ −ε|z|k for all w = (w1, . . . , wn) ∈ T 1,0CbΩ.
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Problem 3:

Study Gromov hyperbolicity with respect to the Kobayashi distance of domains of finite D’Angelo
1-type with no assumption of convexity.

After careful discussing of the problems during the first session, we decided to concentrate on the study
of the last problem, since it satisfied the interests of all the participants of the group.

Definition 6.1. In complex geometry, the Kobayashi metric dK in a space X is defined as the largest
pseudometric on X such that

dk(f(x), f(y)) ≤ ρ(x, y)

over all possible holomorphic imbeddings f : D → X of the unit disc endowed with a hyperbolic distance
ρ(x, y) induced by the Poincare metric in D.

Definition 6.2. A (pseudo) metric space (X, dK) is called Kobayashi hyperbolic if the pseudometric dK is
a metric on X.

Consider an arbitrary metric space (M,d). For arbitrary points y, z ∈ M we take a point x ∈ M and
write a triangle inequality

d(y, z) ≤ d(y, x) + d(x, z).

Then the value

(y · z)x =
1

2

(
d(y, x) + d(x, z)− d(y, z)

)
is called the Gromov product and it measures how much we add to the distance d(y, z) by going “around
the corner” through the point x ∈M .

Definition 6.3. A metric space (M,d) is called Gromov hyperbolic if there is δ > 0 such that

(y · z)x ≥ min{(y · w)x, (z · w)x} for all x, y, z, w ∈M.

The classical hyperbolic space—whether in the ball model or the upper half-space model—is both
Kobayashi and Gromov hyperbolic. In their work, Z. Balogh and M. Bonk [3] demonstrated that a bounded
(and hence Kobayashi hyperbolic) strictly pseudoconvex domain Ω ⊂ Cn with C2 boundary is also Gromov
hyperbolic with respect to the Kobayashi metric dK . They posed an open problem: Can a similar result be
established for domains of finite D’Angelo type, without assuming convexity?

A. Zimmer later addressed this question by proving that if Ω ⊂ Cn is a bounded convex domain with C∞

boundary, then the metric space (Ω, dK) is Gromov hyperbolic if and only if Ω has finite D’Angelo 1-type.
He also constructed an example of a Gromov hyperbolic domain that is neither convex nor smooth, and
which contains an analytic disk in its boundary.

Recall that the D’Angelo 1-type at a boundary point of a domain in complex space is a numerical invariant
that quantifies the maximal order of contact between complex analytic curves (i.e., 1-dimensional complex
varieties) and the boundary at that point. This invariant plays a central role in the study of the ∂̄-Neumann
problem, subelliptic estimates, regularity theory, and the classification of the complex geometry of domain
boundaries.

During our working sessions, we explored various approaches to defining the q-type property of the
boundary of a domain Ω ⊂ Cn. In particular, we examined Catlin’s approach, which defines the q-type via
the generic value of the normalized order of contact, in contrast to D’Angelo’s definition, which uses the
infimum over such values. We also discussed several aspects of Gromov hyperbolicity in metric spaces.

We reviewed the main steps in the result of Balogh and Bonk, which established the Gromov hyperbolicity
of bounded strictly pseudoconvex domains. Their approach involved constructing a Carnot–Carathéodory
metric on the boundary using the strictly positive Levi form. In this context, we also familiarized ourselves
with quasi-isometries and rough isometries, which serve as morphisms in the category of Gromov hyperbolic
metric spaces.

Our current objective is to understand why convexity plays such a crucial role in establishing Gromov
hyperbolicity. Additionally, we aim to investigate what can serve as a substitute for the Carnot–Carathéodory
metric in the absence of a positive definite Levi form. We plan on holding Zoom meeting over the summer
and then visiting each other during the academic year 2025-2026 in order to continue the work.
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