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This report summarizes the organization, presentation highlights, and scientific progress made at the
fourth workshop for women in noncommutative algebra and representation theory, held at the Banff Interna-
tional Research Station in Banff, Canada. The workshop brought together 42 participants from 12 countries
(Argentina, Australia, Brazil, Canada, Colombia, France, Germany, Hungary, Mexico, the Netherlands, the
United Kingdom, and the United States) at various stages of their careers, all with strong ties to the research
themes of the event. The program featured a series of 20-minute introductory talks by participants, as well as
dedicated group time for collaborative research projects. Final presentations were delivered by each group at
the end of the week, showcasing significant progress and laying the groundwork for continued collaboration.
The WINART4 workshop was a vibrant and productive event, and we look forward to future opportunities to
build on its success.

1 Overview of the Field
Noncommutative algebra and representation theory are vibrant and deeply interconnected areas of mathe-
matics that provide foundational tools for understanding symmetry, structure, and transformations across
both pure and applied disciplines. In noncommutative algebra, the focus is on algebraic systems where mul-
tiplication is not required to commutea generalization that encompasses matrix algebras, operator algebras,
and many algebras arising in mathematical physics and geometry. Representation theory, in turn, studies
how algebraic objects act on vector spaces, translating abstract structures into concrete linear algebraic data.
Together, these fields offer a rich language for exploring the hidden algebraic structure of geometry, topology,
combinatorics, and number theory.

The WINART4 workshop centered on a range of cutting-edge topics at the intersection of these fields,
including cluster algebras and categories, gentle algebras, frieze patterns, superalgebras, quantum groups,
and vertex operator algebras. Each of these themes exemplifies how algebraic and combinatorial ideas come
together in modern representation theory. Cluster algebras, introduced in the early 2000s, have reshaped
large parts of algebra and geometry through their recursive and combinatorial structure, with deep ties to Lie
theory, Teichmller theory, and integrable systems. Gentle algebrasfinite-dimensional algebras with a tractable
combinatorial structurehave emerged as key examples in the representation theory of surfaces and infinite-
type algebras. Quantum groups, born from the theory of quantum integrable systems, provide a deformation
of classical Lie algebras and have inspired powerful generalizations in topology and category theory. Finally,
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diagrammatic and combinatorial frameworks such as frieze patterns and planar algebras continue to reveal
surprising new paths for understanding the structure of representations and their categorifications.

2 Recent Developments and Open Problems
Recent years have witnessed remarkable advances in noncommutative algebra and representation theory,
often driven by new interactions among algebraic, combinatorial, and geometric approaches. In cluster theory,
the development of cluster categories has provided deep insights into categorification and mutations, while
applications of cluster structures to Markov-type Diophantine equations and representation theory of infinite-
type quivers continue to evolve. New infinite-rank Grassmannian cluster categories and their completions
have opened paths toward understanding wild representation types through topological and homological tools.

Parallel progress in the theory of gentle algebras has led to the classification of certain derived and graded
structures, with important implications for the broader study of homological dimensions and silting theory.
Quantum groups remain central to many areas of modern mathematics, and recent work has strengthened
their connections to canonical bases, categorification, and cluster algebras, with applications extending into
low-dimensional topology and mathematical physics.

Despite these developments, many compelling open problems remain. One such problem, addressed
by several WINART4 participants, is the classical FrobeniusMarkov uniqueness conjecture: whether each
largest entry in a Markov triple uniquely determines that triple. Reformulated through the lens of cluster mu-
tations, this longstanding question now invites new approaches grounded in representation theory. Similarly,
generalizations of ConwayCoxeter frieze patternssuch as infinite and superfriezesraise open questions about
their classification, periodicity, and geometric interpretations via triangulated surfaces and annuli.

Other challenges include extending classification results for derived equivalence classes of gentle and
skew-gentle algebras, understanding periodicity and growth in infinite-type cluster structures, and construct-
ing explicit categorifications of quantum and combinatorial invariants. These questions form part of a larger
program of unifying algebraic, topological, and combinatorial methodsa vision strongly reflected in the group
projects and collaborative efforts of WINART4 participants.

3 Objectives
• To have accessible introductory lectures by world experts in the themes of the workshop.

• To have each participant engaged in a stimulating research project and/or be involved in an expansive
research program in noncommutative algebra and/or representation theory.

• To have each participant provide or receive training toward this research activity (before and at the
workshop) and to have made significant progress in such directions by the end of the workshop.

• To set up mechanisms so that the collaborative research groups formed before/at the workshop can
continue research after the workshop, so that their findings will be published eventually.

• To provide networking opportunities and mentoring for its participants at and beyond the workshop.

4 Organization
In this section, we describe the organization of WINART4 in detail, as future organizers of workshops at
BIRS or other venues may be interested in adapting this format.

In September 2023, the organizers submitted a proposal to BIRS for the fourth workshop in the Women
in Noncommutative Algebra and Representation Theory (WINART) series. The format followed earlier
WINART workshops and was modeled after similar events such as Women in Number Theory (WIN) and
Women in Topology (WIT). Participants were divided into collaborative research groups, each led by two
experts, with the goal of fostering sustained research engagement before, during, and after the workshop.

Soon after the proposal was accepted (in late 2023), the organizers confirmed participation from group
leaders and created a webpage on the WINART network site:
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https://women-in-ncalg-repthy.org/

This site included:

• a description of the workshop format and goals,

• information about each group leaders research interests and project description,

• funding and accommodation details, and

• an application form for prospective participants.

The application form, circulated via professional mailing lists and social media, requested: name, email,
affiliation, position, year of Ph.D. (or expected), top three research group preferences, reasons for those
preferences, and a summary of previous research experience. The application deadline was early July 2024,
and we received an overwhelming number of applications from across the globe.

The process for selecting the non-leader participants was as follows. To ensure that we had a strong pool
of graduate students and postdoctoral researchers, we pre-invited a select group of early-career mathemati-
cians with a broad range of research interests before the application was launched. This step was necessary in
part to meet institutional deadlines for grant and funding applications. As in previous WINART workshops,
the public application was then circulated widely through academic listservs, professional societies, and so-
cial media. The resulting applicant pool was both large and highly qualified. Depending on the goals and
funding needs of future WINART events, organizers may again find it helpful to combine a limited number
of pre-invitations with an open call for applications.

By mid-September 2024, participants were notified of their group placements. This email included:

• names and websites of group members,

• a project description and suggested pre-reading,

• guidance for preliminary Zoom meetings, and

• information on lodging, meals, travel support, and child care (which is excellent at BIRS).

Due to continued interest in WINART, all applicants were invited to remain active in the broader WINART
network via the website above. Several strong applicants not selected for WINART4 have already expressed
interest in future workshops.

A few pre-workshop cancellations were addressed using a strong alternate list. One research group,
unable to attend in person, gathered at the University of Minnesota and participated fully via Zoom joining
discussions, research work, and final presentations remotely.

WINART4 officially began Sunday, March 23, 2025, with check-in and dinner at the Banff Centre, fol-
lowed by an informal social gathering in BIRS Lounge. Each weekday began with breakfast at the Vistas
Dining Room, and Monday morning included a brief welcome from the BIRS Station Manager.

The formal daily structure was as follows:

• Morning: Research time from 9:0011:30 AM (with coffee/tea at 10:00),

• Afternoon: Lunch from 11:301:00 PM; participant talks or research time from 1:005:30 PM (with a
tea break at 3:00),

• Evening: Informal gatherings in the TCPL foyer or breakout rooms, and dinner from 5:307:30 PM.

Six participants gave 20-minute research talks from 1:002:00 PM on Monday, Tuesday, and Thursday:
Melody Molander, Natasha Rozhkovskaya, J. Daisie Rock, Azzurra Ciliberti, Kayla Wright, and Elise Cata-
nia.

Wednesday afternoon was reserved for informal collaboration, hiking, and exploration of Banff. Through-
out the week, research groups often continued working into the evenings.

Final research presentations were delivered in two sessions. On Thursday afternoon, Groups 13 (HarrisPa-
trias, BittmannYldrm, anakFedele) presented; on Friday morning, Groups 48 (CarboneJurisich, Colmenarejo-
Tymoczko, GibneyMakarova, Gratzpenko, SerhiyenkoValdivieso-Daz) gave their summaries. Several groups
included remote participants in their reports using Zoom.
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Initially, the organizers considered rotating breakout rooms to ensure equal access to larger spaces. How-
ever, by request of the group leaders, rooms were fixed for the entire week so that boards and notes could
remain in place. This decision helped maximize research continuity and comfort.

Throughout the workshop, informal discussions, mentoring, and spontaneous collaborations flourished
across groups and career stages. Many participants remarked that WINART4 was one of the most intellec-
tually productive and supportive environments of their careers. Several collaborative papers and follow-up
meetings are already in progress as a result of the connections made during the workshop.

The complete schedule is included below.

WINART4 Schedule

Sunday, March 23
• 16:0017:30 Check-in (Professional Development Centre)

• 17:3019:30 Dinner (Vistas Dining Room)

• 20:0022:00 Informal gathering (BIRS Lounge)

Monday, March 24
• 07:0008:45 Breakfast

• 08:4509:00 Welcome by BIRS Staff

• 09:0011:30 Research Time

• 10:0010:30 Coffee Break

• 11:3013:00 Lunch

• 13:0013:30 Melody Molander: Planar Algebras and their Corresponding Categories

• 13:3014:00 Natasha Rozhkovskaya: Action of Infinite-Dimensional Algebraic Structures on Symmetric
Functions

• 14:0017:30 Research Time

• 15:0015:30 Coffee Break

• 17:3019:30 Dinner

• 19:3021:00 Informal gathering (TCPL foyer)

Tuesday, March 25
• 07:0008:45 Breakfast

• 08:4511:30 Research Time

• 10:0010:30 Coffee Break

• 11:3013:00 Lunch

• 13:0013:30 J. Daisie Rock: Semi-Discrete Cluster Categories

• 13:3014:00 Azzurra Ciliberti: Cluster Algebras of Type B and C

• 14:0017:30 Research Time

• 15:0015:30 Coffee Break

• 17:3019:30 Dinner

• 19:3021:00 Informal gathering
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Wednesday, March 26
• 07:0008:45 Breakfast

• 08:4511:30 Research Time

• 10:0010:30 Coffee Break

• 11:3013:00 Lunch

• 13:0017:30 Free Afternoon

• 17:3019:30 Dinner

• 19:3021:00 Informal gathering

Thursday, March 27
• 07:0008:45 Breakfast

• 08:4511:30 Research Time

• 10:0010:30 Coffee Break

• 11:3013:00 Lunch

• 13:0013:30 Kayla Wright: SL3 and SL4 Webs in Grassmannian Cluster Algebras

• 13:3014:00 Elise Catania: A Toric Analogue for Greenes Rational Function of a Poset

• 14:0015:00 Research Time

• 15:0015:30 Coffee Break

• 16:3016:50 Group 1 Report (Harris and Patrias)

• 16:5017:10 Group 2 Report (Bittmann and Yldrm)

• 17:1017:30 Group 3 Report (anak and Fedele)

• 17:3019:30 Dinner

• 19:3021:00 Informal gathering

Friday, March 28
• 07:0008:45 Breakfast

• 08:0009:30 Research Time

• 09:3009:45 Group 4 Report (Carbone and Jurisich)

• 09:4510:00 Group 5 Report (Colmenarejo and Tymoczko)

• 10:0010:30 Coffee Break

• 10:3010:50 Group 6 Report (Gibney and Makarova)

• 10:5011:10 Group 7 Report (Gratz and penko)

• 11:1011:30 Group 8 Report (Serhiyenko and Valdivieso-Daz)

• 11:3013:30 Lunch
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As with prior WINART workshops, participants were free to adjust their group schedules to suit their
own pace and focus. Many groups worked late into the evening or took advantage of the outdoor spaces and
informal lounges to continue discussion.

Overall, the schedule provided a productive rhythm that balanced intensive research time with space for
reflection, exchange of ideas, and mentoring. Several groups formed strong new collaborations, and many
participants expressed that WINART4 was among the most productive and inspiring events of their academic
careers.

5 Presentation Highlights
• Monday, March 24, 13:00–13:30 — Melody Molander: Planar Algebras and their Corresponding

Categories
Subfactor planar algebras first were constructed by Vaughan Jones as a diagrammatic axiomatization
of the standard invariant of a subfactor. Planar algebras can be conveniently encoded by diagrams in
the plane. These diagrams satisfy some skein relations and have an invariant called an index. The
Kuperberg Program asks to find all diagrammatic presentations of subfactor planar algebras. This
program has been completed for index less than 4. In this talk, I will introduce subfactor planar algebras
and find presentations for subfactor planar algebras of index 4 associated with the affine A Dynkin
diagram. Then I will show that categories arising from these planar algebra presentations are also
describing categories of representations.

• Monday, March 24, 13:30–14:00 — Natasha Rozhkovskaya: Action of infinite-dimensional alge-
braic structures on symmetric functions
W1+∞ is the central extension of the Lie algebra of differential operators on the circle. It has appli-
cations in integrable systems and two-dimensional quantum field theory. There is an interest in the
action of this algebra on symmetric functions coming from the studies of such integrable systems as,
for example, the KP hierarchy. Our goal is to describe the action on the basis of symmetric functions
in terms of generating functions of multiplication operators.

• Tuesday, March 25, 13:00–13:30 — J. Daisie Rock: Semi-discrete cluster categories
In 2006, BMRRT introduced us to the wonderful world of cluster categories. In 2015, Igusa and
Todorov gifted us continuous cluster categories. Until now, these constructions have largely remained
separate. Last year, Paquette-R-Yldrm introduced generalized thread quivers, which introduce non-
discreteness to the notion of thread quivers, which come from Berg and van Roosmalen. In this ongoing
work, we discuss how to smash the continuous and discrete worlds together and obtain something that
sits inbetween. Ongoing joint work with Charles Paquette and Emine Yldrm.

• Tuesday, March 25, 13:30–14:00 — Azzurra Ciliberti: Cluster algebras of type B and C: from
Combinatorics to Representation Theory
We begin by recalling the combinatorial definitions by generators and relations of cluster algebras of
type A, B and C with principal coefficients in a triangulation of a regular polygon. Then, we present
a formula expressing cluster variables of type B and C in terms of cluster variables of type A. This
formula allows us to provide the cluster expansion of cluster variables of type B and C in terms of
perfect matchings of certain modified snake graphs. Finally, we associate a symmetric quiver Q with
any cluster of these cluster algebras. In this framework, cluster variables of type B (resp. C) correspond
to orthogonal (resp. symplectic) indecomposable representations of Q.

• Thursday, March 27, 13:00–13:30 — Kayla Wright: SL3 and SL4 Webs in Grassmannian Cluster
Algebras
The Grassmannian Gr(k,n) of k-planes in an n-dimensional space is a well-loved algebraic variety and
seems to be the keeper of many fascinating combinatorial problems. One way Gr(k,n) can be endowed
with a cluster algebra structure is through the combinatorics of plabic graphs. Though its cluster algebra
structure is defined combinatorially, generators and bases for these algebras are not well understood
for k ≥ 3. We will explore how webs seem to be the missing piece of combinatorics, focusing on
k = 3 and 4, specifically using the new machinery of Gaetz, Pechenick, Pfannerer, Striker, Swanson
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hourglass webs. In particular, we will discuss web duality, as defined by Fraser, Lam and Le, and show
how it can be used to understand Laurent expansions of cluster variables as generating functions of
higher dimer covers. This will be based on joint work with two other WINART participants: Esther
Banaian and Elise Catania, as well as Christian Gaetz, Miranda Moore, and Gregg Musiker.

• Thursday, March 27, 13:30–14:00 — Elise Catania: A Toric Analogue for Greene’s Rational
Function of a Poset
Given a finite poset, Greene introduced a rational function obtained by summing certain rational func-
tions over the linear extensions of the poset. This function has interesting interpretations, and for certain
families of posets, it simplifies surprisingly. In particular, Greene evaluated this rational function for
strongly planar posets in his work on the Murnaghan–Nakayama formula. In 2012, Develin, Macauley,
and Reiner introduced toric posets, which combinatorially are equivalence classes of posets (or rather
acyclic quivers) under the operation of flipping maximum elements into minimum elements and vice
versa. In this work, we introduce a toric analogue of Greene’s rational function for toric posets, and
study its properties. In addition, we use toric posets to show that the Kleiss–Kuijf relations, which ap-
pear in scattering amplitudes, are equivalent to a specific instance of Greene’s evaluation of his rational
function for strongly planar posets. Also in this work, we give an algorithm for finding the set of toric
total extensions of a toric poset.

6 Scientific Progress Made

6.1 Kostant’s Partition Function and Multiplex Juggling
Group leaders: Pamela E. Harris and Rebecca Patrias.
Group members: Kimberly P. Hadaway, Kimberly J. Harry, Lucy Martinez, Miriam Norris.

Introduction: In this short report we give progress report on the project on Kostant’s partition function
and multiplex juggling sequences for the exceptional Lie algebras. We begin by giving the connection to
representation theory of Lie algebras which motivates our problem of interest and follow this with some of
our ongoing progress.

Representation Theory: The following problem arises in representation theory of complex semisimple
Lie algebras: What is the multiplicity, denoted m(λ, µ), of the weight µ in the irreducible representation
with dominant highest weight λ, which we denote by L(λ)? This problem dates back to Hermann Weyl,
(Mathematische Zeitschrift, 1925 [3]), and it continues to attract the attention of present day mathematicians.
The first approaches addressing this question stemmed from formulas such as the Weyl character formula. In
1948, Kostant developed his well-known formula for computing the multiplicity of a weight in an irreducible
highest weight representation (Amer. J. Math., 1959 [2]). This formula consists of an alternating sum over
the Weyl group and involves a partition function. The partition function is known as Kostant’s partition
function and it counts the number of ways a weight (vector) can be written as a nonnegative integer linear
combination of the positive roots (a fixed set of vectors). Despite the availability of such a formula, using
it for computational purposes can be quite daunting, due to the fact that the number of terms appearing in
the alternating sum is factorial in the rank of the Lie algebra, and the value of the Kostant partition function
involved is very often unknown. These complications and the computational complexity involved in such a
formula have motivated Pamela E. Harris’s research in this field and were the basis for the collaboration of
this team, which began at BIRS in March 2025.

Connection to Multiplex Juggling Sequences: In the paper Kostant’s partition function and magic
multiplex juggling sequences, C. Benedetti, C. R. H. Hanusa, P. E. Harris, A. Morales, and A. Simpson [1]
establish a combinatorial equivalence between Kostant’s partition function and (magic) multiplex juggling
sequences, providing a juggling framework to calculate Kostant’s partition functions and a partition function
framework to compute the number of juggling sequences. This equivalence yields applications to polytopes,
posets, positroids, and weight multiplicities, thus opening numerous directions for our future research. In our
work at BIRS, we began the work of extending the juggling framework of this paper to the exceptional Lie
algebras. We have succeeded in doing this for the exceptional Lie algebra g2 while at BIRS. We are in the
writing stages and have some initial ideas that appear to be promising for us to give juggling analogs for all
remaining exceptional Lie algebras.
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Based on our initial investigation at BIRS, it appears that our juggling framework for the Kostant partition
function for the exceptional Lie algebra g2 provides evidence for a unifying juggling framework much more
generally for all vector partition functions using parts which are positive roots of Lie types including the
classical and the exceptional Lie algebras. The specialization of our juggling framework will not only recover
known juggling frameworks for Kostant’s partition function in the classical Lie types, but it will also provide
the analogous result for the exceptional Lie types, which was our goal for this collaboration.

6.2 Grassmannians, cluster categories and completions
Group leaders: Sira Gratz and Špela Špenko.
Group members: Charley Cummings, Ellen Kirkman, Janina Letz, Daisie Rock.

Report: Constructing new triangulated categories from old is a notoriously challenging problem. In
recent work, Neeman [7] defines the completion of a triangulated category T with respect to a metric on
the category, which is again a triangulated category, with triangulated structure imposed by the original
triangulated structure on T . This process is inspired by topological completions of metric spaces: One works
in the ind-completion of T , and formally adds the colimits of compactly supported Cauchy-sequences. In
this project, we calculate metric completions for categories exhibiting Grassmannian cluster combinatorics of
infinite rank. Specifically, we are interested in the categories of maximal Cohen-Macaulay modules (MCM)
over certain graded hypersurface singularities, as studied in a previous WINART project [4]. Specifically, we
work over a field k, set S = k[x, y], viewed as a graded ring with x in degree 1 and y in degree −1, and
consider the hypersurfaces S/(xk) for k ≥ 2—which includes the hypersurface singularity S/(x2) of type
A∞—and S/(x2y)—the hypersurface singularity of type D∞. Setting R to be any of these rings with the
grading inherited from S, we set out to realise its category MCMZ(R) of graded MCMs as a completion of
its subcategory of generically free MCMs. This is inspired by [5] which computes the completion of a class
of cluster categories, which includes the R = S/(x2) case as a special example, via a classical topological
completion.

We attack this problem from different perspectives:

1. We treat the type D∞ hypersurface singularity separately, and explicitly compute homomorphism
spaces in MCMZ(S/(x2y)), with the goal of finding a combinatorial model, and a framework in which
to explicitly compute completions.

2. We consider two distinct “approximations” of T = MCMZ(S/(xk)): Firstly, we expand the grading
by considering S as a (Z×Z)-graded ring with x in degree (1, 0) and y in degree (0,−1). This allows
us to view T as an orbit of the bounded derived category Db(gr(k[y]An−1)), where y is in degree 1.
Secondly, we forget part of the grading, by considering the alternative Z-grading on S by putting x in
degree 1 and y in degree 0. This allows us to obtain a functor from T to the bounded derived category
Db(modk[y]An−1).

3. On the way, we study the dual construction of completions of a triangulated category within its pro-
completion, via Cauchy-cosequences, and compare it to the metric completion, specifically in the case
of self-dual triangulated categories.

6.3 Caldero-Chapoton Map for Gentle Algebras
Group leaders: Khrystyna Serhiyenko and Yadira Valdivieso.
Group members: Esther Banaian, Ilaria Di Dedda, Azzurra Ciliberti, Kayla Wright.

Report: Our WINART project explores the rich connections between representation theory of algebras
and geometry/combinatorics of surfaces. More specifically, a celebrated result in this direction is that gentle
Jacobian algebras provide a categorification of surface cluster algebras. The setup for this result is as follows:
given a triangulation of a surface, one can associate a Jacobian algebra J such that the combinatorics of the
arcs in the surface reflects the representation theory of J as well as the associated cluster algebra [9, 10]. One
important aspect of this is that arcs γ on the surface correspond to J-modules Mγ . Our project focuses on a
map called the Chaldero-Chapoton map, commonly called the CC map for short. The CC map of a J-module
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Figure 1: Resolution of a crossing.

M is defined by the following formula:

CC(M) = xind(M)
∑
e

χ(Gre(M))xBe,

where the sum is taken over all dimension vectors e of submodules ofM . This CC map is important in cluster
theory as it yields Laurent polynomials in xi’s which are elements of the cluster algebra [8, 14]. Moreover,
the CC map satisfies the Ptolemy relations which define the associated surface cluster algebra. That is, given
two arcs γ, γ′ that cross, let α, α′, β, β′ be the four arcs obtained by resolving this crossing. This means that
α, α′ and β, β′ form opposite sides of the quadrilateral in the surface that contains γ, γ′ as its diagonals, see
Figure 6.3. Then the CC map of these arcs satisfies the following identity:

CC(Mγ)CC(Mγ′) = CC(Mα)CC(Mα′) + CC(Mβ)CC(Mβ′).

More recently, given any gentle algebra Λ one can associate a surface S(Λ) with some additional data
such that it provides a geometric model for the bounded derived category Db(Λ) of Λ [11, 12, 13]. In
particular, an arc γ on the surface yields a complex of projective Λ-modules Pγ that come from the crossings
of the arc with the laminations on S(Λ). Moreover, a crossing between two arcs γ, γ′ corresponds to two
morphisms Pγ → Pγ′ and Pγ′ → Pγ between the associated objects of Db(Λ), while resolving a crossing
in the two possible ways corresponds to computing the cones of these morphisms. Our goal is to study the
analog of Ptolemy relations in this setting and identify quantities that satisfy these relations.

Our first main result shows that the Ptolemy relations hold on the level of the Grothendieck group. That
is, given Pγ ∈ Db(Λ), let x(Pγ) denote the associated element in the Grothendieck groupK0(Db(Λ)), which
corresponds to an alternating sum of xi’s for every indecomposable projective modules P (i) appearing in the
complex Pγ . One can think of x(Pγ) as the generalization of the g-vector or the index ind(M) appearing in
the CC map. With this notation we are able to show the following statement.

Theorem 1. Let γ, γ′ be two finite arcs in S(Λ) that cross in the interior. Let α, α′, β, β′ be the arcs obtained
by resolving this crossing, as in Figure 6.3. Then

x(Pγ)x(Pγ′) = x(Pα)x(Pα′) + x(Pβ)x(Pβ′).

Next, we explore relations between homology of the complexes and Ptolemy relations. We conjecture
that the dimension vectors of the homology, which we denote by y(Pγ) also satisfy Ptolemy relations, so we
obtain an analogous formula as in the theorem above. Unlike in the classical case of surface triangulations
and cluster algebras, neither x(Pγ) nor y(Pγ) determine the complex Pγ . Therefore, our future goal is to
associate a function to Pγ analogous to the CC map that would capture the complex completely and satisfy
the Ptolemy relations.

6.4 Springer fibers and their generalizations, Hessenberg varieties
Group leaders: Laura Colmenarejo and Julianna Tymoczko
Group members: Elise Catania, Sheila Sundaram, Tamanna Chatterjee, Mitsuki Hanada.

Springer fibers and their generalizations, Hessenberg varieties, are at the nexus of combinatorics, geom-
etry, linear algebra, and representation theory. They sit inside the flag variety, which can be viewed either as
the collection of nested linear subspaces in a fixed n-dimensional complex vector space, or as the quotient of
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invertible matrices by upper-triangular matrices. It has long been known that the geometry of flag varieties is
deeply connected with the combinatorics of the symmetric group. This field of research, Schubert calculus,
has led to enormously powerful interactions between representation theory, commutative algebra, algebraic
geometry, and combinatorics.

The Springer fiber of a square matrix X consists of the “eigenflags” of that matrix, namely the flags
for which X restricts to an endomorphism on each of the nested subspaces. Its geometry is subtle and
complicated, interweaving the combinatorics of partitions (inherited from the Jordan decomposition of X)
with the combinatorics of permutations (inherited from the flag variety). Adding even more complexity,
Hessenberg varieties loosen the condition under which X acts on each subspace using another combinatorial
constraint (essentially a Dyck path).

A web is a directed planar graph with boundary. In our project we use webs and other combinatorial tools
to analyze representation theoretic and geometric questions about Springer fibers and Hessenberg varieties.

Webs for sl2 are noncrossing matchings, which biject with 2×n standard Young tableaux as well as many
other Catalan objects. If we model 2-row Springer fibers with noncrossing matchings, we gain information
about cell closures and gluings.

For the sl3 case, much less is known. In particular, modeling the top-dimensional cells of 3-row Springer
fibers using sl3 webs is more complicated.

Before meeting in person, we looked at the following topics and readings:

• Springer fibers. Our primary resource was “The geometry and combinatorics of Springer fibers” by
Tymoczko (available at: https://arxiv.org/pdf/1606.02760).

• Webs, which represent quantum invariant vectors. These are explicitly constructed in “Web bases for
sl(3) are not dual canonical” by KhovanovKuperberg (available at:
https://msp.org/pjm/1999/188-1/pjm-v188-n1-p07-s.pdf).

• The basis for the web space is indexed by rectangular standard Young tableaux, and the relationships
between these two combinatorial constructions are interesting. Two references we used to explore this
relationship were “Promotion and cyclic sieving via webs” by PetersonPylyavskyyRhoades (available
at: https://arxiv.org/pdf/0804.3375), and “A simple bijection between standard 3 × n
tableaux and irreducible webs for sl3” by Tymoczko (available at:
https://www.emis.de/journals/JACO/Volume35 4/9441547648513778.fulltext.pdf).

These meetings were very helpful as they provided us with an outline of ideas to discuss at the workshop.

During the workshop week at BIRS, we investigated the different combinatorial models, including webs,
strandings, tableaux, and the Bruhat order. We also compiled data both by hand and using Sage. Our goal
was to look at the following questions:

• Given a web coming from a standard Young tableau of shape 3×n, which standard Young tableaux of
the same shape strand it?

• Give combinatorial ways to compute web depth in terms of the strandings.

6.5 Mirror deformation of Markov numbers
Group leaders: La Bittmann and Emine Yldrm
Group members: Perrine Jouteur, Melody Molander, Ezgi Kantarc Ouz.

Report: The Markov numbers are the positive integer solutions of the following famous Diophantine
Equation

x2 + y2 + z2 = 3xyz. (ME0)

This equation is called Markov equation defined by Markov in the late 19th century [20]. The solution
triples consisting of positive integers are called Markov triples. One solution triple we can easily get is
(1, 1, 1). It is very well known that all the other solution triples can be obtain by a Vieta jump which is an
operation of replacing an entry x on a triple with x′ = (y2 + z2)/x. Thus, we obtain a new Markov triple
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tree placeholder.png

Figure 2: First levels of Markov Tree T0

(x′, y, z). Note that the Vieta jump can be applied to any coordinate as the equation is symmetric on x, y and
z. Visualising the operations as edges on a graph, we get the Markov Tree T0.

Each triple has a maximum and they grow as we move further from the solution (1, 1, 1). These max-
imums are important to understand the Lagrange spectrums. Frobenius conjectured in 1913 that each of
these maximums is unique; more precisely, they do not occur as a maximum in another Markov triple. This
conjecture is still open after a century (see Aigner’s book [15]).

The Markov Equation can be translated into the language of cluster algebras and the Vieta jumps corre-
spond to cluster mutations. Consider the quiver below in Figure 3

1 2

3

Figure 3: Markov quiver

We label each vertex of the quiver with a variable; say we call the initial cluster (x, y, z). If we mutate
at any of the vertices, we then get a new cluster (x, y, x

2+y2

z ), corresponding exactly to a Vieta jumps in the
Markov Equation. Markov triples correspond to the clusters for the cluster algebra coming from the quiver in
Figure 3. Setting the initial cluster variables to 1 gives rise to all Markov numbers. This connection made it
possible to expand the study of Markov numbers and led to other generalized versions of the Markov equation
(see for instance [18, 19, 16]).

Our work is inspired by a question from Frdric Chapoton. We look at a certain q-deformation that exhibits
algebraically and combinatorially interesting properties, while carrying a strong connection to the original
Markov Equation. We introduced the Squared Deformed Markov Equation as follows.

X2 + Y 2 + Z2 + (q + q−1)(XY + Y Z +XZ) = 3(1 + q + q−1)XY Z. (MEq+q−1 )

A solution to MEq+q−1 is given by a triple of Laurent polynomials (X(q), Y (q), Z(q)) with positive co-
efficients. As a normalization condition, we require our polynomials to be degree-symmetric: if the maximum
degree of q occurring with a non-zero coefficient is qt, then the minimum degree is q−t. First of all, we show
that all solutions is obtained from the initial solution (1, 1, 1) via mutations which results in a tree structure
Tq+q−1 .

We note that this deformation is distinct from the deformations previously explored in [23]. The word
mirror refers to an interesting property of the solutions. We have

(X(q), Y (q), Z(q)) = (x(q)x(q−1), y(q)y(q−1), z(q)z(q−1))

where x(q), y(q) and z(q) are polynomials in q and (x(1), y(1), z(1)) is a Markov triple. The product
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X(q) = x(q)x(q−1) can be rewritten as q− deg(x)x(q)x̃(q) where x̃ is the mirror image of x, i.e., x with its
coefficients reversed.

We define a mutation operation directly on the polynomial triples (x(q), y(q), z(q)). This leads us a new
q-deformation for Markov numbers that we call the mirror deformation. This new discovery leads us to prove
interesting combinatorial properties.

Finally, we would like to mention that the equationMEq+q−1can be modified to get other generalizations
of the Markov equation.

(i) Setting (q + q−1)2 = 0 in the mirror Markov equation, then one gets super Markov numbers [21];

(ii) Setting q to integers, one obtains Gyoda-Matsushita [19] Markov equations;

(iii) Setting q to complex numbers, we discover a connection to complex Markov numbers in the sense of
[17].

(iv) Setting q + q−1 = λp = 2 cosπ/p, we get the generalized Markov equation coming from cluster
algebras of orbifold surfaces.

6.6 Periodic Infinite Super-Friezes
Group leaders: İlke Çanakçı and Francesca Fedele
Group members: Amanda Burcroff, Monica Garcia, Viktória Klász.

Integral friezes were first introduced by Coxeter in [26] as arrays of integers of the form

. . . 0 0 0 0 0 0 0 0 . . .

. . . 1 1 1 1 1 1 1 1 . . .

. . . a1 a2 a3 a4 a5 a6 a7 a8 . . .

. . . b1 b2 b3 b4 b5 b6 b7 b8 . . .

. . .
...

...
...

...
...

...
... . . .

that satisfy a local rule: for any four neighbours a, b, c, d forming a diamond
b

a d

c

, we have that ad−bc = 1.

Integral friezes that end with a row of 1s followed by a row of 0s after n many non-trivial rows are
called finite integral friezes of width n and Conway and Coxeter proved in [25] that they are in bijection with
triangulations of convex (n+ 3)-gons.

Building on the above, friezes have been studied and generalised in various directions. One particularly
interesting generalisation arises from cluster algebras of type A and their connection to decorated Teichmller
theory. In this setting, the entries of the frieze are not integers but the generators of the algebranamely, the
cluster variables.

Choosing an initial triangulation of a convex (n + 3)-gon with boundary segments set to 1, in the cor-
responding decorated Teichmüller space, the lambda lengths of arcs between the polygon vertices can be
expressed in terms of the initial ones and they satisfy the so-called Ptolemy relations. A special case of such
a relation is illustrated in Figure 4, where a, b, c, d are lambda lengths and the two arcs denoted by 1 are
boundary.

All cluster variables can be expressed as Laurent polynomials of the ones corresponding to the arcs of
the initial triangulation and the integral friezes can be recovered by specialising to 1 the cluster variables
corresponding to the initial triangulation.

The notion of integral and algebraic friezes has also been expanded to cover infinite cases, that is friezes of
infinite width. In [24], the authors prove that periodic infinite friezes come from triangulations of annuli. As
before, such triangulations give both friezes whose entries are cluster variables in the corresponding cluster
algebra and integral friezes (when the cluster variables corresponding to the arcs in the initial triangulation
are set to 1).
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b

a

1

c 1

b1

c 1

d

Figure 4: Ptolemy relation: ad = bc+ 1.

As a further generalisation of friezes, [27] introduced the notion of (finite) superfriezes. Roughly speak-
ing, a superalgebra is a Z2-graded algebra, whose even variables commute with everything and odd variables
anticommute with each other. Similarly to the way we associate a cluster algebra to a surface S, with gen-
erators corresponding to lambda lengths in the decorated Teichmüller space of S, in [29] Penner and Zeitlin
associate a superalgebra to S with even generators corresponding to super lambda lengths in the decorated
super Teichmüller space of S and odd generators corresponding to triangles. These generators obey a gen-
eralisation of the Ptolemy relations: the so-called super Ptolemy relations. Similarly to the classic case, in
[28] the authors use them to build a corresponding superfrieze for type A: a diamond and the corresponding
variables are illustrated in Figure 5,

a

θ

b

σ

c

d

σ′

θ′

b

a

1
θ

c 1
σ

b1

c 1

dθ′ σ′

Figure 5: A diamond in the superfrieze and the variables on the surface.

where ad− bc = 1 + θθ′, aθ′ − cθ = σ and bθ′ − dθ = σ′.
The above led us to a natural question: do periodic infinite super-friezes exist? If so, do they come from

triangulations of annuli? Our project aims to answer these questions.

6.7 Defining Hecke-like Operators on Vertex Operator Algebras with modular traces
Group leaders: Lisa Carbone and Elizabeth Jurisich
Group members: Maryam Khaqan and Natasha Rozhkovshkaya.

Hecke operators serve as fundamental tools in the intersection of modular forms, representation theory,
and vertex operator algebras. In the case of monstrous moonshine Hecke operators are applied to the relevant
modular functions (which are hauptmoduls) to obtain recursions vital to the computational part of the proof
of the monstrous moonshine conjectures [30], [32] or [36] for an overview. Motivated by the moonshine
case, and the importance of modularity in vertex algebra theory, our group worked on creating Hecke-like
operators on vertex algebras and other related objects.

Starting with the foundational example of the Moonshine M-module V \ [31], where Aut(V \) = M is
the Monster simple group with McKay-Thompson series Tg for g ∈ M, we define generalized Hecke-like
operators on V \ considered as a graded M-module. This same definition can be extended extended to other
suitable pairs of vertex operator algebras V and finite groupsG, where V is a gradedG-module with modular
graded traces. Additionally, we explored certain non-vertex algebra cases.

We define a new operator for “suitable” pairs (V,G) with V ∈ R(G)[q] (for example the moonshine
module V \ and M). The suitability condition on the module we assume here is modularity of the graded
dimension (or trace), of weight k. We define
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Definition: The ith Hecke-Adams operator on V is given by

T (i)

∑
j∈Z

Vjq
j

 =
∑
j≥−1

γi(Vj)q
j (1)

γi(Vj) =
∑
d|(i,j)

dk−1Ψd(Vij/d2).

Here Ψd : R(G)→ R(G) is the dth Adams operation on the λ-ring R(G) [34]. This definition, when the
trace of g acting on the formula is taken, aligns with the generalized Hecke operator definition in [35]. We
have naturally extended their definition to an operator on the ring R(G)[[q]] as summarized in [33].

At Banff the group worked on identifying cases of “suitable” vertex algebra and group pairs, and also
potential non-VOA settings. The fundamental properties of VOAs that ensure the modularity of the associated
graded traces [37] are crucial for understanding the context in which Hecke operators may be defined.

We studied three types of examples where our operators can or are conjectured to be defined:

1. Moonshine Examples: G a finite group, V a graded G-module that is a Vertex Algebra or superalgebra
with Aut(V ) = G.

2. Examples with G a finite group, V a graded G-module with no explicit or known VOA structure.
McKay-Thompson series are assumed modular and may be completely replicable. We consider exam-
ples such as those G. Mason’s introduced in [38].

3. Examples of VOA’s V with modular or weakly modular characters, and some choice of group,including
the trivial group and the full automorphism group. These examples will include C2-cofinite cases and
those vertex algebras satisfying the conditions Zhu’s theorem [37].

Examples of VOAs in the above categories include the Moonshine VOA V \, the Leech Lattice VOA VΛ,
the Niemeier Lattice VOAs, the Baby Monster VOA. The non-VOA examples excepting the ones suggested
by [38] are conjectural.

6.8 Associative Algebras for VOSAs
Group leaders: Angela Gibney and Svetlana Makarova
Group members: Darlayne Addabbo, Lilit Martirosyan, and Ava Mock

Introduction: Vertex operator algebras (VOAs) and their supersymmetric generalizations provide a
mathematical framework for studying two-dimensional conformal field theories and related structures. A
well-known construction, dating back to the early work of Tsuchiya–Kanie [59], Tsuchiya–Ueno–Yamada
[61], and Beilinson–Feigin–Mazur [60], takes as input a classical vertex operator algebra (VOA), together
with n modules over it, together with an algebraic curve with n marked points, and outputs a vector space of
coinvariants (and its dual vector space of conformal blocks). For affine VOAs at positive integer levels, and
discrete series Virasoro VOAs, studied by [59, 61, 60], vector spaces spaces of conformal blocks are famously
isomorphic to spaces of (generalized) theta functions (see eg. [62]), and they were shown to fit together to
form vector bundles over the moduli spaceMg,n of stable n-pointed curves of genus g.

The definitions for such sheaves of coinvariants and conformal blocks were extended, for rational and C2-
cofinite VOAs of CFT-type, on moduli of smooth curves (see e.g. [63]), and on moduli spaces of n-pointed
curves with singularities by Nagatomo and Tsuchiya in [64]. Extensions to pointed stable curves higher genus
and more general VOAs have recently been found by Damiolini–Gibney–Tarasca and Damiolini–Gibney–
Krashen [65, 66, 68, 67]. Much is understood about these vector bundles [69, 70, 71, 72, 73].

Current and future work: Our long-term goal is to use theory developed in [67] in order to further
extend sheaves of coinvariants and conformal blocks to vertex operator super algebras (VOSAs). VOSAs are
ubiquitous, including recent realizations in terms of homology of numerous moduli spaces.

Key tools from [67] include the so-called mode transition algebra A, and d-th mode transition sub-algebras
Ad, whose construction relies crucially on an associative algebra introduced by Zhu [74]. Now known as
Zhu’s algebra, A(V ) was defined by Zhu [74] as a quotient of V by a specific subspace, where he established a
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one-to-one correspondence between simple admissible V -modules and irreducible A(V )-modules. Analgous
“higher level” Zhu algebras Ad(V ) were defined in [75], where they showed that V is rational if and only if
all the Ad(V ) are finite and semi-simple.

Extending these ideas to the supersymmetric setting, Kac and Wang [76] defined an associative algebra
structure on an analogous quotient A(V ) for VOSAs and established a bijective correspondence between
simple admissible V -modules and the irreducible representations of A(V ). They further described fusion
rules and discussed rationality for several examples, including VOSAs associated to representations of affine
Kac-Moody superalgebras, Neveu-Schwarz algebras, and those generated by free fermionic fields.

In both the classical and super cases, A(V ) and its higher level generalizations (and twists) have been
realized through different constructions. Notably, He [77], following work of [78] in the twisted super setting,
proved that in the classical case the Ad(V ) are isomorphic to a certain quotient of the degree zero part of the
universal enveloping algebra for the Lie algebra associated to V . These quotient realizations of the Zhu
algebra for a classical VOA are used in [67] to define the mode transition algebra A and d-th mode transition
subalgebras Ad.

With this in mind, the first step of our project, carried out at the 2025 WINART workshop at Banff,
was to obtain such a quotient construction in the supersymmetric setting, showing that for a VOSA V, the
Zhu algebra AS(V ) = AS0 (V ) and its higher level super Zhu algebra ASd (V ) for each d, is isomorphic to a
particular sub-quotient of the degree zero part of the universal enveloping algebra associated to V . For our
applications, the universal enveloping algebra we work with is different than what is used in [78]. Given this
and our interest in characteristic free applications, we found it useful to work everything out explicitly and
with full details.

Our current work involves applying these quotient constructions for the Zhu algebra to the development
of the theory of the mode transition algebra and d-th mode transition sub-algebras in the supersymmetric
context.

To illustrate, as was shown for instance in [67], there are adjoint functors between the categories of
Ad(V )-modules and certain V -modules which we have extended to the super setting. The mode transition
algebra is defined via the d = 0 functor, and the d-th mode transition algebras are related to the higher level
Zhu algebras. The d-th mode transition algebras act on the degree d parts Wd of admissible V-modules W .
In the classical setting, for VOAs, there are a number of applications especially in cases where the d-th mode
transition algebras admit units that act as identity elements on Wd for all d and W (these are strong units).

A medium term aim is to show in the super setting that, like for classical VOAs, the adjoint d = 0 functors
define equivalent categories if and only if the Ad have strong units for all d. The long plan is to apply these in
the development of the theory of sheaves of coinvariants and conformal blocks for representations of VOSAs.

7 Outcome of the Meeting
As described above, very significant scientific progress was made before and during the WINART workshop.
Moreover, a number of common themes emerged across groups (e.g. involving certain homological, Lie-
theoretic, diagrammatic techniques), which will be explored between members of different groups after the
workshop. In any case, every group set concrete plans to continue research activities, and all look forward to
staying in touch with their group members and other participants in the future.

Plans are already underway for WINART5 and for the continuation of collaborations begun at BIRS.
Follow-up activities may include special sessions at AMS or CMS meetings, and collaborative visits through
research-in-teams programs.
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