
Preliminary Schedule of Invited Talks

August 9th, 2010

8:40-8:50 Welcome to the workshop and the BIRS centre

8:50-9:30
Prof. D. Jerison (MIT)
Title: A gradient bound for free boundaries

9:40-10:20 Prof. R. Mazzeo (Stanford)
Title:Renormalized area of minimal surfaces in hyperbolic space

10:20:10:45
Coffee Break

10:45-11:25
Prof. M. Kowalczyk (Univ. Chile)
Title:Minimal surfaces and entire solutions of the Allen-Cahn equa-

tion

11:35-12:15
Prof. W. Meeks (Univ. Mass.)
Title: Constant mean curvature surfaces in homogeneous 3-manifolds

12:15-2:30
Lunch

2.30-3:10
Prof. E.N. Dancer (Univ. Sydney)
Title: Stable solutions on all space and applications

3:10-3.40
Coffee Break

3:40-4:20
Prof. R. Kusner (Univ. Mass.)
Title: Moduli spaces of complex projective structures and CMC sur-

faces

4:30-5:10
Prof. H. Matano (Univ. Tokyo)
Title: Front progagation for nonlinear diffusion equations on the

hyperbolic space

5:20-6:00
Prof. C. Gui (Univ. Connecticut)
Title: Axial Symmetry of Some Entire Solutions of Nonlinear Elliptic

Equations
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August 10th, 2010

8:50-9:30
Prof. P.H. Rabinowitz (Univ. Wisconsin)
Title: Hybrid solutions for a semilinear elliptic PDE

9:40-10:20
Prof. A. Malchiodi (SISSA)
Title: Asymptotically periodic solutions for the NLS and related

issues

10:20:10:45
Coffee Break

10:45-11:25
Prof. P. Bates (Michigan State Univ.)
Title: Heirarchy of solutions to gradient elliptic systems with sym-

metry

11:35-12:15
Prof. P. Sternberg (Indiana Univ.)
Title: Global minimizers of the nonlocal isoperimetric problem in

two dimensions

12:15-2:30
Lunch

2:30-3:10
Prof. N. Kapouleas (Brown Univ.)
Title: Doubling and desingularization constructions for minimal sur-

faces.

3:10-3.40
Coffee Break

3:40-4:20
Prof. J.M. Roquejoffre (Univ. Toulouse)
Title: 3D travelling waves for mean curvature motion and unbal-

anced Allen-Cahn,

4:30-5:10
Prof. A. Farina (Univ. Picardie)
Title: Phase transition, stability and symmetry

5:20-6:00
Prof. N. Ghoussoub (Univ. British Columbia)
Title: Regularity issues and Liouville theorems for 4th order equa-

tions
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August 11th, 2010

8:50-9:30
Prof. F. Pacard (Univ. Paris 12)
Title: The role of minimal and constant mean curvature surfaces in

some overdetermined elliptic problem.

9:40-10:20
Prof. P. Polacik (Univ. Minnesota)
Title: Symmetry properties of nonnegative solutions of elliptic equa-

tions

10:20-10:45
Coffee Break

10:45-11:25
Prof.J. Ratzkin (Univ. Connecticut)
Title: Isoperimetric-type inequalities and eigenvalues

11:35-12:05
Prof. M. Musso (Cath. Univ. Chile)
Title: Finite-energy sign-changing entire solutions for some classical

semilinear elliptic equations

Lunch
Free Afternoon
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August 12th, 2010

8:50-9:30
Prof. C.S. Lin (National Taiwan Univ.)
Title: Mean field equations of Liouville type at critical parameters

9:40-10:20
Prof. Y. Tonegawa (Hokkaido Univ.)
Title: Regularity of stable phase interfaces in the Van der Waals-

Cahn-Hilliard theory

10:20:10:45
Coffee Break

10:45-11:25
Prof. E. Valdinoci (Univ. Roma 3)
Title: Pointwise gradient estimates and rigidity results

11:35-12:05
Prof. Y. Sire (Univ. Paul Cezanne)
Title: Some nonlinear problems with fractional Laplacians

12:05-2:30
Lunch

2:30-3:00
Prof. S. Yan (Univ. New England)
Title: Infinitely many positive solutions for an elliptic problem with

critical or super-critical growth

3:00-3.30
Coffee Break

3:30-4:00
Prof. X. Nguyen (Kansas State Univ.)
Title: Complete embedded self-translating surfaces under mean cur-

vature flow
4:10-4:40

Prof. J. Dávila (Univ. Chile)
Title: Periodic fronts for nonlocal equations

4:50-5:20
Prof. P. Montecchiari (Univ. Pol. delle Marche).
Title: Prescribed Energy solutions of semilinear elliptic equations on

cylindrical domains.
5:30-6:10 Prof. X.-F. Wang (Tulane)

Title:Thermal Insulation via Anisotropic Coatings

Dinner
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August 13th, 2010

8:50-9:30
Prof. W.-X. Chen (Yeshiva)
Title: Symmetry and Regularity of Solutions for Nonlinear Systems

of Wolff Type.

9:40-10:20
Prof. Congming Li (Univ. Colorado)
Title: Qualitative Analysis of Solutions to the HLS systems

10:20:10:45
Coffee Break

10:45-11:15
Prof. F. Mahmoudi (Univ. Tunis., Univ. Chile)
Title: TBA

11:25-12:05
Prof. Y. Du (Univ. New England)
Title: Spreading speed revisited-a free boundary approach

Lunch

END of Program. Thank You!

Have a Nice Trip!





Symmetry and Regularity of Solutions for
Nonlinear Systems of Wolff Type.

Wenxiong Chen Congming Li

July 12, 2010

Abstract

In this talk, we will consider radial symmetry and regularity for
positive solutions of the fully nonlinear integral systems involving Wolff
potentials: {

u(x) = Wβ,γ (vq)(x), x ∈ Rn;
v(x) = Wβ,γ (up)(x), x ∈ Rn;

(1)

where

Wβ,γ (f)(x) =

∫ ∞

0

[∫
Bt(x)

f(y)dy

tn−βγ

] 1
γ−1

dt

t
.

In a special case when β = α
2 and γ = 2, system (1) reduces to

{
u(x) =

∫
Rn

1
|x−y|n−α v(y)qdy, x ∈ Rn,

v(x) =
∫
Rn

1
|x−y|n−αu(y)pdy, x ∈ Rn.

(2)

The solutions (u, v) of (2) are critical points of the functional associ-
ated with the well-known Hardy-Littlewood-Sobolev inequality. The
classification of solutions would provide the best constant in the HLS
inequality.

We can also prove that the integral system (2) is equivalent to the
system of partial differential equations

{
(−∆)α/2u = vq, u > 0, in Rn,
(−∆)α/2v = up, v > 0, in Rn.

(3)

And in particular when α = 2, it reduces to the well-known Lane-
Emden system. And even more particularly, when p = q = n+2

n−2 , it
becomes the Yamabe equation.

The symmetry is obtained by the integral form of the method of
moving planes. This method is quite different from the ones for PDEs.
Instead of using maximum principles, some global norms are estimated.
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The regularity is established by liftings. We will mention two conve-
nient ways to lift regularity for solutions: one by contracting operators
and the other by the combined use of contracting and shrinking op-
erators. We will focus on the latter–a new idea which has just been
applied in our recent paper to establish Lipschitz continuity of positive
solutions for system (1).

Usually, in order to lift the regularity of a solution from a lower
to a higher space (in terms of regularity), we required that operator
T be contracting in both spaces. However, for a nonlinear operator
in certain spaces, it is sometimes very difficult, or even impossible, to
prove it to be contracting, although one may still be able to show that
it is “shrinking”. Here we introduce a more general theorem , namely,
one which requires that the operator be contracting in one space but
only “shrinking” in the other. We believe this theorem will find broad
applications in many other situations in nonlinear analysis.

Let V be a Hausdorff topological vector space. Suppose there are
two extended norms (i.e., the norm of an element in V might be infin-
ity) defined on V ,

‖ ·‖ X , ‖ ·‖ Y : V→[0,∞].

Let

X := {v ∈ V : ‖v‖X < ∞} and Y := {v ∈ V : ‖v‖Y < ∞}.

We also assume that X is complete and that the topology in V is
weaker than the topology of X and the weak topology of Y , which
means that the convergence in X or weak convergence in Y will imply
convergence in V .

Definition 1. ( “XY-pair”) The pair of spaces (X,Y ) described above
is called an “XY-pair”, if whenever the sequence {un} ⊂ X with un →
u in X and ‖un‖Y ≤ C will imply u ∈ Y .

In practice, we usually choose V to be the space of distributions
and X,Y to be the function spaces, such as Lp spaces, Hölder spaces,
Sobolev spaces, and so forth. There are many commonly used function
spaces that are “XY-pairs,” as will be illustrated in the remark after
the theorem.

Theorem 1. (Regularity Lifting) Suppose Banach spaces X,Y are an
“XY-pair”, both contained in some larger topological space V satisfying
properties described above. Let X and Y be closed subsets of X and Y
respectively. Suppose T : X → X is contracting:

‖Tf − Tg‖X ≤ η‖f − g‖X , ∀ f, g ∈ X and for some 0 < η< 1; (4)

and T : Y → Y is shrinking:

‖Tg‖Y ≤ θ‖g‖Y , ∀ g ∈ Y, and for some 0 < θ< 1. (5)
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Define
Sf = Tf + F for some F ∈ X ∩Y.

Moreover, assume that

S : X ∩Y→X ∩Y. (6)

Then there exists a unique solution u of equation

u = Tu+ F in X,

and more importantly,
u ∈ Y.

Remark 1. In some situations, one can choose X = X and Y = Y .
In practice, if one knows that a solution u of u = Su belongs to

X (usually with lower regularity), then by Theorem 1, one can lift the
regularity of u up to u ∈ X ∩ Y (with higher regularity).

Remark 2. “XY-pairs” are quite common, as one can see from the
following examples.

• X = Lp(U) for 1 ≤ p ≤ ∞, Y = C0,α(U) for 0 < α ≤ 1, and V
is the space of distributions. Here U can be any subset of Rn or
Rn itself.

• X is a Banach space, Y is a reflexive Banach space, and both
are in some bigger topological space, V . Of course, we assume
V is Hausdorff and has topology weaker than the topology of X
and the weak topology of Y . Then for any un → u ∈ X and
‖un‖Y ≤ C, we have u ∈ Y .

Notice that all Hilbert spaces, such as L2, H1, and H2, are re-
flexive Banach spaces.

3











Phase transitions, stability and symmetry

Alberto Farina

Université de Picardie Jules Verne
LAMFA, CNRS UMR 6140

Amiens, France

In 1978 E.De Giorgi [4] posed the following question : Let u ∈ C2(IRN , [−1, 1]) satisfy

−∆u = u− u3 and
∂u

∂xN
> 0 (1)

in the whole IRN .
Is it true that all the level sets of u are hyperplanes, at least if N ≤ 8 ?

Equivalently, De Giorgi’s conjecture can be reformulated by saying that the considered
solution u is 1D, that is, it depends only on one variable (up to rotations).

De Giorgi’s conjecture is settled for N = 2, 3 ([10],[2]). When 4 ≤ N ≤ 8, the conjec-
ture is still open and no counterexample is available (not even for more general semilinear
equations). For N ≥ 9, in [5] the authors have constructed a solution of (1), which is not
1D. This implies that the assumption N ≤ 8 in De Giorgi’s conjecture cannot be removed.

The PDE in (1) is the well-known Allen-Cahn equation arising in phase transition
problems [1] and a possible motivation for the conjecture is the following : let u be as in
De Giorgi’s conjecture, ε > 0 and let uε(x) := u(x/ε). The monotonicity assumption in De
Giorgi’s conjecture seems to suggest that :

• the level sets of u (and thus those of uε) are graphs over IRN−1,
• the phase transition happens in a straight, minimal way.

Thus, when ε→ 0+, the level sets of uε are closer and closer (in a suitable way ([11],[12],[3]))
to entire minimal graphs ϕ over IRN−1, i.e. a solution of

−div

[
∇ϕ√

1 + |∇ϕ|2

]
= 0 in IRN−1. (2)

Since entire minimal graphs are flat for N − 1 ≤ 7, due to Bernstein-type Theorems, it
follows that the level sets of uε are close to a flat hyperplane.

Here N ≤ 8 is crucial !

Now, since elliptic problems are somehow “rigid”, we may suspect that once the level
set {uε = c} is close enough to a hyperplane, it is a hyperplane itself. By scaling back, this
would give that {u = c} is a hyperplane.

Then, the level sets of u would be parallel hyperplanes and thus u would be 1D, as
asked by De Giorgi’s conjecture.



In the previous (heuristic) argument some gaps have to be filled :

• no minimality condition is explicitly required in De Giorgi’s conjecture, so the results
about the asymptotic behavior of minimizers are not directly applicable,

• the monotonicity condition does not assure, in principle, that the level sets of u are entire
graphs over IRN−1, so Bernstein-type results are not directly applicable,

• one would need to proof the rigidity argument.

In this talk we discuss how (and how much of) this program can be carried out. We also
present the recent progress on the De Giorgi’s conjecture and its generalizations, for N ≥ 4
([6],[7],[8],[9],[13]). To this end we introduce the notion of stable solution of the semilinear
equation −∆u = f(u), f ∈ C1, and then we prove some one-dimensional symmetry results
for this class of solutions. In particular, since monotone solutions and local minimizers are
special cases of stable solutions, any classification result (1D symmetry result) about stable
solutions immediately gives an answer to De Giorgi’s conjecture.
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Qualitative Analysis of Solutions to the HLS
systems

Congming Li
Univ. of Colorado at Boulder

August 9, 2010

The main object is the study of nonnegative solutions to the integral
system derived from the well known Hardy-Littlewood-Sobolev inequality in
both weighted and non-weighted form:





u(x) = 1

|x|α
∫
Rn

v(y)q

|y|β |x−y|λdy

v(x) = 1
|x|β

∫
Rn

u(y)p

|y|α|x−y|λdy
(1)

0 < p, q < ∞, 0 < λ < n, λ ≤ λ .= λ+ α + β ≤ n, 1
p+1 + 1

q+1 = λ
n ,

α
n < 1

P+1
.= 1− 1

r < λ+α
n , and β

n < 1
q+1 = 1− 1

s < λ+β
n

We begin with a short/incomplete review of the related results and prob-
lems. The main focus is on the classification of solutions in the ‘critical-case’
and on the Liouville type theorems in the ‘subcritical case’. The well-known
Land-Emden conjecture is a Liouville type ‘theorem’ in a special case of the
‘subcritical’ type HLS systems. We then present some integral type estimates
– a key ingredient in deriving both classification and the Liouville type the-
orem. As an application, we use the special integral type estimates to derive
the asymptotic expansion of the solutions at infinity as well as at the possible
interior singular point.

The talk will consist with five main parts:

1: The ‘Uniqueness’ of Nonlinear Differential and Integral Systems:
Liouville Type Theorems and Classification

2: Hardy-Littlewood-Sobolev Inequality and Its Euler-Lagrange Equa-
tions.
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3: The Role of Symmetry, Integrability, and Asymptotics.

4: The Radial Symmetry: the MMP and the Regularity Lifting

5: The Asymptotic via the Optimal Integrability- a recent work.

The following local estimate will be discussed in detail:

Assume λq + β(q + 1) > n., then for any 0 < θ ≤ α and 1
r > α−θ

n , we
have |x|θu(x) ∈ Lr

loc(R
n). In particular, |x|αu(x) ∈ Lr

loc(R
n) for any r < n

α−θ ,
which means |x|αu(x) is ALMOST locally bounded.

This result shows the optimal local integrability of |x|θu(x). In fact, one
can prove |x|θu(x) ≥ C

|x|α−θ , which implies that

‖|x|θu(x)‖r ≥ C‖ 1

|x|α−θ
‖s = ∞

as long as r ≥ n/(α− θ).
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Isoperimetric-type inequalities and Eigenvalues

1 Introduction

The history of isoperimetric-type inequalities stretches back well over 100 years. In particular,
St. Venant conjectured in the 1880’s that a round beam is the strongest, among all beams with
a given cross-sectional area. At approximately the same time, Rayleigh conjectured that a round
drumhead makes the lowest note among all drumheads with a given area. Both these conjectures
were proven in the early and middle of the last century. To make the statements more precise,
we need to introduce some notation.

Let D ⊂ Rn be a bounded domain with a locally Lipschitz boundary, which satisfies a uniform
cone condition. The fundamental frequency (i.e. the first Dirichlet eigenvalue of the Laplacian
on D) λ1(D) is defined by

λ1(D) = inf
{∫

D |∇u|2∫
D u2

: u ∈ W 1,2
0 (D)

}
. (1)

Under the stated conditions on the domain, a minimizer φ exists and solves the boundary value
problem

∆φ + λ1(D)φ = 0, φ|∂D = 0. (2)

Similarly, the torsional rigidity P (D) is defined by

4
P (D)

= inf

{∫
D |∇u|2
(∫

D u
)2 : u ∈ L1(D) ∩W 1,2

0 (D)

}
. (3)

As is the case for the fundamental frequency, a minimizer φ exists and solves the boundary value
problem

∆φ + 2 = 0, φ|∂D = 0, (4)

and, in fact one can recover the torsional rigidity as

P (D) = 2
∫

D
u.

We can now state St. Venant’s principle as P (D) ≤ P (D∗), where D∗ is a round ball with the
same volume as D. Similarly, Rayleigh’s conjecture, now known as the Faber-Krahn theorem,
says λ1(D) ≥ λ1(D∗). In both cases one achieves equality only if D = D∗ almost everywhere.
Moreover, one can prove both these inequalities by rearranging a test function for the relevant
quotient.

2 Eigenvalues of domains in cones

We introduce some terminology to state a theorem regarding λ1(D), where D lies inside a cone.
LetΩ ⊂ Sn−1

+ be a convex domain in the upper unit hemisphere, and let

W = {(r,θ ) : r > 0, θ ∈ Ω}

be the cone overΩ . For r0 > 0 let

S(r0) = W ∩ Bn
r0

(0) = {(r,θ ) : 0 < r < r0, θ ∈ Ω}
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be the sector of radius r0 in W. Notice that, if ψ is the first Dirichlet eigenfunction ofΩ , with
eigenvalue µ, then

w(r,θ ) = rαψ(θ), α =
2− n

2
+

√(
2− n

2

)2

+ µ (5)

is a positive, harmonic function with zero boundary data on ∂W.
The following theorem extends a two-dimensional result of Payne and Weinberger to all di-

mensions.

Theorem 1. (-) Let D ⊂ W be a bounded, locally Lipschitz domain with a uniform cone condi-
tion, and choose r0 so that ∫

S(r0)
w2 =

∫

D
w2.

Then λ1(D) ≥ λ1(S(r0)), with equality if and only if D = S(r0) almost everywhere.

The key tool in the proof of the theorem directly above is the following weighted isoperimetric
inequality.

Proposition 2. Let D ⊂ W be a bounded, locally Lipschitz domain with a uniform cone condition.
Then

∫

∂D
w2dA ≥

[
(2a + 2)

∫

D
w2dV

] 2a+1
2a+2

, a = α +
n− 2

2
=

√(
n− 2

2

)2

+ µ,

with equality if and only if D = S(r0) almost everywhere for some r0.

3 Interpolation results

Tom Carroll and I have discovered a one-parameter family of variational problems which inter-
polate between the fundamental frequency and torsional rigidity defined above.

Definition 1. Let if n = 2 let p ≥ 1, and if n ≥ 3 let 1 ≤ p < 2n
n−2 . For a smooth, bounded

domain D ⊂ Rn define

Cp(D) = inf

{ ∫
D |∇u|2

(∫
D up

)2/p
: u ∈ Lp(D) ∩W 1,2

0 (D)

}
= infΦ p(u).

Critical points of the functionalΦ p satisfy the well-known PDE

∆φ + Λφp−1 = 0 (6)

for some Lagrange multiplierΛ . Standard results in PDE tell us that, in the stated range of the
exponent p, a positive minimizer φ exists for the functionalΦ p, and it is fairly straight-forward
to derive scaling laws.

Theorem 3. (Carroll, -) If 1 ≤ p < q then

Vol(D)2/pCp(D) > Vol(D)2/qCq(D).

Notice that the inequality in this theorem is always strict.

Theorem 4. (Carroll, -) Let D∗ be the ball with the same volume as D. Then Cp(D) ≥ Cp(D∗),
with equality if and only if D = D∗ almost everywhere.

Some remarks are in order. First, we recover several inequalities relating λ1(D) and P (D),
which one can find in Polya and Szegő’s book. Second, the PDE (6) is attached to a huge
literature, and our primary goal is to point out another natural source of this equation. Third,
we see this as an interpolation result, and so we hope that one can use the functionalsΦ p and
the continuity method to derive estimates for λ1(D) from estimates for P (D), or vice-versa.
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Global minimizers of the nonlocal isoperimetric problem in two dimensions

P. Sternberg, Indiana University

Abstract

In this talk we analyze the minimization of the so-called nonlocal isoperimetric problem
(NLIP) posed on the flat 2-torus. The nonlocal isoperimetric problem (NLIP) is given
by

minimize Eγ(u) :=
1
2

∫

T2
|∇u| + γ

∫

T2
|∇v|2 dx, (0.1)

over all u ∈ BV (T2, {±1}) satisfying
∫

T2
u dx = m

and v satisfying

−∆v = u−m in T2 with
∫

T2
v dx = 0. (0.2)

Here T2 is the flat 2-torus and the first term in Eγ computes the perimeter of the set
{x : u(x) = 1}. For a specific range of m-values and for γ small, we show that the global
minimizer is lamellar; that is, the set {x : u(x) = 1} is simply a strip.

The problem (NLIP) arises, up to a constant factor, as theΓ -limit as ε → 0 of
the well-studied Ohta-Kawasaki sequence of functionals Eε,γ which model microphase
separation of diblock copolymers, [3]:

Eε,γ(u) :=






∫
T2

ε
2 |∇u|2 + (1−u2)2

4ε + γ |∇v|2 dx if u ∈ H1(T2)
and

∫
T2 u dx = m,

+∞ otherwise,

(0.3)

where again v satisfies (0.2). There is an extensive literature exploring the energy land-
scape for Eε,γ in two and three dimensions, whether posed on the flat torus (i.e. with
periodic boundary conditions) or on a general domain with homogeneous Neumann data,
cf. e.g. [1, 5, 6, 7, 8, 9]. The picture is quite rich and complicated, with the diffuse in-
terface sometimes bounding one or more strips, wriggled strips, discs or ovals.

Much the same richness exists for the energy landscape of (NLIP). As such, indepen-
dent of its connection to Ohta-Kawasaki, (NLIP) attracts interest as a rather canonical
nonlocal perturbation of the classical isoperimetric problem. Indeed, as a model for
pattern formation, (NLIP) sets up a basic competition between low surface area (the
perimeter term) and high oscillation (the nonlocal term).

In three dimensions, computations reveal a wide array of stable critical points, with
the free boundary ∂{x : u(x) = 1} consisting of one or more pairs of parallel planes,
one or more spheres, cylinders or even hypersurfaces resembling more exotic triply peri-
odic constant mean curvature surfaces such as gyroids, depending on where in the (m,γ )

1



parameter space one looks. With few exceptions, however, rigorous proofs of stability
for particular patterns are rare, and to our knowledge, there are no proofs of global or
even local minimality of specific critical points. In this regard, we mention the inter-
esting investigation of [4], in which the authors seek to show that a lamellar (striped)
pattern minimizes energy for a slightly different model related to diblock copolymers.
Commenting on the inherent difficulty in picking out such a pattern as the “winner” in
an energy landscape full of locally minimizing competitors, the authors of [4] remark,
“...when comparing a striped pattern with arbitrary multidimensional patterns we know
of no rigorous results, for any system.” We also note the recent work [2] on a charac-
terization of minimizers in a related model including screened Coulomb interaction in
the setting of small volume fraction. There the author shows that minimizers form a
collection of nearly identical circular droplets.

Here we have chosen to focus on the two-dimensional setting of (NLIP) with γ small
in order to present what is perhaps the first rigorous proof that a particular pattern is
globally minimizing.

This research represents joint work with Ihsan Topaloglu.
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REGULARITY OF STABLE PHASE INTERFACES
IN THE VAN DER WAALS–CAHN–HILLIARD THEORY

YOSHIHIRO TONEGAWA

LetΩ ⊂ Rn (n ≥ 2) be a bounded domain and consider the family of van der Waals–
Cahn–Hilliard energy functionals Eε, ε ∈ (0, 1), ([2]; see also [8]) given by

Eε(u) =

∫

Ω

ε|∇u|2

2
+

W (u)

ε
dx,(1)

where u : Ω → R belongs to the Sobolev space H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}
and W : R → R+ ∪ {0} is a given C3 double-well potential function with (precisely two)
strict minima at ±1 with W (±1) = 0. In case W (u) '∈ L1(Ω), we set Eε(u) = +∞. When
ε → 0+ with Eε(uε) remaining bounded independently of ε, it is clear (from the bound on
the second term of the integral above) that uε must stay close to ±1 on a bulk region in
Ω and typically (i.e. in case the sets {uε ≈ 1} and {uε ≈ −1} each has measure ≥ a fixed
proportion of the measure of Ω ) there is a transition layer of thickness O(ε), which we may
call an “interface region” or a “diffused interface”.

In the past few decades it has been established that in the presence of a uniform bound
on the energy Eε(uε) and under natural variational hypotheses on uε of varying degrees
of generality, for small ε > 0, the interface region corresponding to uε is close to a (weak)
minimal hypersurface V of Ω (the “limit-interface” as ε → 0+) and that Eε(uε) approximates
a fixed multiple of the (n − 1)-dimensional area of this hypersurface. Modica ([7]) and
Sternberg ([11]) established this, in the framework ofΓ -convergence, for absolutely energy
minimizing uε; they proved that the limit-interface V is locally area minimizing in that
case, and hence by the well known regularity theory for locally area minimizing currents,
it is smooth away from a possible closed singular set of codimension ≥ 7; Kohn–Sternberg
([5]) extended the result for locally energy minimizing uε. More recently, Hutchinson and
I ([4]) showed that V is a stationary integral varifold if uε are merely critical points of Eε.
Subsequently, I ([12]) showed that whenever the uε are stable critical points of Eε, the limit
stationary integral varifold V is stable in the sense that V admits a generalized second
fundamental form which satisfies the stability inequality.

Concerning smoothness of V when the critical points uε are not assumed to be energy
minimizing, little is known beyond the following theorem ([12]): Suppose that n = 2, εi → 0+

as i → ∞ and that {uεi}∞i=1 ⊂ H1(Ω) is a sequence of stable critical points of Eεi with
supΩ |uεi| + Eεi(uεi) ≤ c for all i ∈ N and some c > 0. Then for any 0 < s < 1, a
subsequence of the sequence of sets {x ∈ Ω : |uεi(x)| ≤ s} converges locally in Hausdorff
distance to a union of non-intersecting lines. Thus in case n = 2, any stable diffused
interface must be close to non-intersecting lines for sufficiently small positive values of the
parameter ε.

Can one make analogous conclusions in dimensions n > 2? Here I describe the recent
results which give a satisfactory affirmative answer to this question in all dimensions. We
show that under the same assumption of stability, for each fixed s ∈ (0, 1), a subsequence
of the sequence of interface regions {x ∈ Ω : |uεi(x)| < s} converges locally in Hausdorff
distance to an embedded smooth stable minimal hypersurface if 2 ≤ n ≤ 7; for n ≥ 8,
the limit stable minimal hypersurface may carry a singular set of Hausdorff dimension at



most n − 8. As mentioned before, this regularity result was known for the limit-interfaces
corresponding to sequences {uεi} of energy minimizers since in that case the limit-interfaces
are area-minimizing. The new result is that the stability hypothesis, which is much weaker
than the energy minimizing assumption, suffices to guarantee the same regularity of the
limit-interface.

The main reason why, in [12], the interface regularity was established only in case n = 2
and not for n > 2 was that while the structure of a stationary 1-dimensional varifold was
known (due to the work of Allard and Almgren ([1])), there was no sufficiently general reg-
ularity theory available at the time for stable codimension 1 integral varifolds of arbitrary
dimension. The essential new input to this problem is the recent regularity theory of Wick-
ramasekera ([13]), which gives a necessary and sufficient geometric structural condition for a
stable codimension 1 integral varifold to be regular. The limit-interfaces in question satisfy
precisely this structural condition; their regularity then follows directly from the general
theory of [13].

While the present work as well as the series of works mentioned above ([7, 11, 4, 12])
investigate the general character of limit-interfaces, there have been a number of articles
which address the question of existence of critical points of (1) whose interface regions
converge to a given minimal hypersurface. In this direction we mention the work by Pacard–
Ritoré ([10]), Kowalczyk ([6]) and a number of recent joint works by del Pino, Kowalczyk,
Pacard, Wei and Yang (see the recent survey paper by Pacard [9] for a complete list of
references). The work of del Pino–Kowalczyk–Wei ([3]) in particular shows that singular
limit-interfaces do occur in dimensions n ≥ 8, demonstrating that the result in fact gives
the best possible general dimension estimate on the singular set of a stable limit-interface.

This is a joint work with Neshan Wickramasekera of University of Cambridge.
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Thermal Insulation via Anisotropic Coatings
Xuefeng Wang

Tulane University
New Orleans, USA

Of concern is the thermal insulation abilities/properties of anisotropic materials. This
is motivated by significant engineering applications of nano-composite materials which, at
the macroscale, commonly exhibit anisotropy. Our physical goal is to efficiently protect a
conducting bodyΩ 1 from overheating by an anisotropically conducting coatingΩ 2, thin
compared to the scale of the body (see Figure 1). An example of such is a space shuttle
coated by a nano-insulator; another example is the inner coating of the combustion chamber
of a turbine engine. One of the central questions is: how thin can the coating be if we know
how small the thermal tensor of the insulator is?

To answer this question, we use eigen-analysis, finding that the following scaling law

(1) lim
δ→0+

σ

δ2
= 0

ensures good insulation of the bodyΩ 1, where δ is the thickness of the coatingΩ 2, and σ is
a parameter proportional to the thermal conductivity of the coating. On the other hand, we
study directly the heat equation with both Dirichlet and Robin boundary conditions on the
outer boundary of the coatingΩ 2: we identify scaling relations among the thermal tensor
and thickness of the coating, and the thermal transport coefficient, such that the effective
boundary conditions on the boundary of the bodyΩ 1 are Dirichlet, Robin and Neumann,
with the last one ensuring good insulation of the body. In particular, from this point of view
the scaling law

(2) lim
δ→0+

σ

δ
= 0

ensures effective Neumann boundary condition on ∂Ω1 and hence good insulation ofΩ 1.
We also find that all these results hold, regardless of the thermal conductivity of the

coating in the directions tangent to the boundary of the body, as long as the coating is
“optimally aligend”and the conductivity is bounded; thus the tangent directions can be left
out, safely, of the thermal consideration, leaving room for mechanical considerations such as
elasticity. By optimal alignment ofΩ 2 we mean that inΩ 2 the direction normal to ∂Ω1 is
an eigenvector of the thermal tensor corresponding to its smallest eigenvalue. (In this case,
σ in both Laws (1) and (2) is proportional to the thermal conductivity of the coating in the
normal direction.) This allows us to take the full advantages of the anisotropy.

Very recently, we find that under the scaling law

(3) lim
δ→0+

σ

δ1+ε
= 0, ε> 0

the maximal time duration when the body is effectively well-insulated is large and at the
order of δ−ε, and in this case we establish the convergence rate of the temperature function
to the solution of the limiting problem inside the body. We also find that in the case of
optimally aligned coating, if the thermal conductivity of the coating in the tangent directions
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Figure 1. Ω2 is uniformly thick and its thickness = δ

is unbounded as δ → 0, then the effective boundary condition on the boundary of the body
may be Wentzell’s boundary condition.

The results described above come from the joint work with Jingyu Li, Steve Rosencrans,
Guojing Zhang and Kaijun Zhang, and the on-going thesis of Cody Pond.
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