Preliminary Schedule of Invited Talks

August 9th, 2010

8:40-8:50 Welcome to the workshop and the BIRS centre

8:50-9:30
Prof. D. Jerison (MIT)
Title: A gradient bound for free boundaries

9:40-10:20 Prof. R. Mazzeo (Stanford)
Title:Renormalized area of minimal surfaces in hyperbolic space

10:20:10:45
Coffee Break

10:45-11:25

Prof. M. Kowalczyk (Univ. Chile)

Title:Minimal surfaces and entire solutions of the Allen-Cahn equa-
tion
11:35-12:15

Prof. W. Meeks (Univ. Mass.)

Title: Constant mean curvature surfaces in homogeneous 3-manifolds

12:15-2:30
Lunch

2.30-3:10
Prof. E.N. Dancer (Univ. Sydney)
Title: Stable solutions on all space and applications

3:10-3.40

Coffee Break
3:40-4:20

Prof. R. Kusner (Univ. Mass.)

Title: Moduli spaces of complex projective structures and CMC sur-
faces

4:30-5:10

Prof. H. Matano (Univ. Tokyo)

Title: Front progagation for nonlinear diffusion equations on the
hyperbolic space
5:20-6:00

Prof. C. Gui (Univ. Connecticut)

Title: Axial Symmetry of Some Entire Solutions of Nonlinear Elliptic

Equations
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Dinner



August 10th, 2010

8:50-9:30

Prof. P.H. Rabinowitz (Univ. Wisconsin)

Title: Hybrid solutions for a semilinear elliptic PDE
9:40-10:20

Prof. A. Malchiodi (SISSA)

Title: Asymptotically periodic solutions for the NLS and related
issues

10:20:10:45
Coffee Break

10:45-11:25

Prof. P. Bates (Michigan State Univ.)

Title: Heirarchy of solutions to gradient elliptic systems with sym-
metry

11:35-12:15

Prof. P. Sternberg (Indiana Univ.)

Title: Global minimizers of the nonlocal isoperimetric problem in
two dimensions

12:15-2:30
Lunch

2:30-3:10

Prof. N. Kapouleas (Brown Univ.)

Title: Doubling and desingularization constructions for minimal sur-
faces.

3:10-3.40

Coffee Break
3:40-4:20

Prof. J.M. Roquejoffre (Univ. Toulouse)

Title: 3D travelling waves for mean curvature motion and unbal-
anced Allen-Cahn,
4:30-5:10

Prof. A. Farina (Univ. Picardie)

Title: Phase transition, stability and symmetry
5:20-6:00

Prof. N. Ghoussoub (Univ. British Columbia)

Title: Regularity issues and Liouville theorems for 4th order equa-
tions



Dinner



August 11th, 2010

8:50-9:30

Prof. F. Pacard (Univ. Paris 12)

Title: The role of minimal and constant mean curvature surfaces in
some overdetermined elliptic problem.
9:40-10:20

Prof. P. Polacik (Univ. Minnesota)

Title: Symmetry properties of nonnegative solutions of elliptic equa-
tions
10:20-10:45

Coffee Break
10:45-11:25

Prof.J. Ratzkin (Univ. Connecticut)

Title: Isoperimetric-type inequalities and eigenvalues
11:35-12:05

Prof. M. Musso (Cath. Univ. Chile)

Title: Finite-energy sign-changing entire solutions for some classical
semilinear elliptic equations

Lunch
Free Afternoon



August 12th, 2010

8:50-9:30
Prof. C.S. Lin (National Taiwan Univ.)
Title: Mean field equations of Liouville type at critical parameters

9:40-10:20
Prof. Y. Tonegawa (Hokkaido Univ.)

Title: Regularity of stable phase interfaces in the Van der Waals-
Cahn-Hilliard theory

10:20:10:45
Coffee Break

10:45-11:25

Prof. E. Valdinoci (Univ. Roma 3)

Title: Pointwise gradient estimates and rigidity results
11:35-12:05

Prof. Y. Sire (Univ. Paul Cezanne)

Title: Some nonlinear problems with fractional Laplacians

12:05-2:30
Lunch

2:30-3:00

Prof. S. Yan (Univ. New England)

Title: Infinitely many positive solutions for an elliptic problem with
critical or super-critical growth

3:00-3.30
Coffee Break
3:30-4:00
Prof. X. Nguyen (Kansas State Univ.)
Title: Complete embedded self-translating surfaces under mean cur-
vature flow
4:10-4:40
Prof. J. Davila (Univ. Chile)
Title: Periodic fronts for nonlocal equations
4:50-5:20
Prof. P. Montecchiari (Univ. Pol. delle Marche).
Title: Prescribed Energy solutions of semilinear elliptic equations on
cylindrical domains.
5:30-6:10 Prof. X.-F. Wang (Tulane)
Title:Thermal Insulation via Anisotropic Coatings

Dinner



August 13th, 2010

8:50-9:30

Prof. W.-X. Chen (Yeshiva)

Title: Symmetry and Regularity of Solutions for Nonlinear Systems
of Wolft Type.
9:40-10:20

Prof. Congming Li (Univ. Colorado)

Title: Qualitative Analysis of Solutions to the HLS systems

10:20:10:45
Coffee Break

10:45-11:15
Prof. F. Mahmoudi (Univ. Tunis., Univ. Chile)
Title: TBA

11:25-12:05
Prof. Y. Du (Univ. New England)
Title: Spreading speed revisited-a free boundary approach

Lunch
END of Program. Thank You!

Have a Nice Trip!



Abstracts of Invited Talks at Banff Workshop (August 8-13, 2010)

Title: Heirarchy of solutions to gradient elliplic systems with symmetry

Prof. Peter Bates

We examine the asymptotic states of symmetric solutions to
Ay — gradW(u) = 0,u : R® — R"constructed by Alikakos and Fusco.
Here W is equivariant under a finite reflection group and has n + 1
nondegenerate minima. Passing to the limit as £ — oc in certain
direction gives lower dimensional solutions with symmetry. This is
joint work with N. Alikakos.

Title: Symmetry and regularity of solutions for nonlinear systems of
Wolff type

Prof. Wenxiong Chen
Attached

Title Stable solutions on all space and Applications
Prof. E.N. Dancer

We discuss that when we can prove all bounded linearized stable
solutions of

—Au = f(u)on R("™)

are constants,we can nearly always obtain a good deal of
understanding of the half space case with Dirichlet boundary
conditions and the finite Morse index solutions. We then discuss the
application of these results to bounded domain problems where the
diffusion is small or the solutions are large. In particular,how the
theory can be used to prove that the branch of positive solutions of
the bounded domain problem has infinitely many bifurcations for a
large number of rapidly growing nonlinearities.



Symmetry and Regularity of Solutions for
Nonlinear Systems of Wolft Type.

Wenxiong Chen Congming Li

July 12, 2010

Abstract

In this talk, we will consider radial symmetry and regularity for
positive solutions of the fully nonlinear integral systems involving Wolff
potentials:

u(z) = Wy, (9)(z), @€ R 1)
v(z) = Ws,(uP)(z), =€ R™
where .
o0 th(w) f(y)dy ot dt
Wi () = [ [tﬁ T
In a special case when 3 = & and v = 2, system (1) reduces to
u(z) = fRn va)qdya z € R", 2)
v(x) = [gn Wu(y)pd% r e R"

The solutions (u,v) of (2) are critical points of the functional associ-
ated with the well-known Hardy-Littlewood-Sobolev inequality. The
classification of solutions would provide the best constant in the HLS
inequality.

We can also prove that the integral system (2) is equivalent to the
system of partial differential equations

(=A% = o9 u >0, in R", ()
(—=A)*/2y =uP v >0, in R™.

And in particular when o = 2, it reduces to the well-known Lane-

. o _ n42
Emden system. And even more particularly, when p = ¢ = %5, it
becomes the Yamabe equation.

The symmetry is obtained by the integral form of the method of
moving planes. This method is quite different from the ones for PDEs.
Instead of using maximum principles, some global norms are estimated.



The regularity is established by liftings. We will mention two conve-
nient ways to lift regularity for solutions: one by contracting operators
and the other by the combined use of contracting and shrinking op-
erators. We will focus on the latter-a new idea which has just been
applied in our recent paper to establish Lipschitz continuity of positive
solutions for system (1).

Usually, in order to lift the regularity of a solution from a lower
to a higher space (in terms of regularity), we required that operator
T be contracting in both spaces. However, for a nonlinear operator
in certain spaces, it is sometimes very difficult, or even impossible, to
prove it to be contracting, although one may still be able to show that
it is “shrinking”. Here we introduce a more general theorem , namely,
one which requires that the operator be contracting in one space but
only “shrinking” in the other. We believe this theorem will find broad
applications in many other situations in nonlinear analysis.

Let V be a Hausdorff topological vector space. Suppose there are
two extended norms (i.e., the norm of an element in V' might be infin-
ity) defined on V,

-1 x5 [Py = V=[0, 0]
Let
X:={veV:|vx <oo} and Y :={v eV :|v|y < oc}.

We also assume that X is complete and that the topology in V is
weaker than the topology of X and the weak topology of Y, which
means that the convergence in X or weak convergence in Y will imply
convergence in V.

Definition 1. ( “XY-pair”) The pair of spaces (X,Y") described above
is called an “XY-pair”, if whenever the sequence {u,} C X with u,, —
win X and [Ju,|y < C will imply u € Y.

In practice, we usually choose V' to be the space of distributions
and X,Y to be the function spaces, such as LP spaces, Holder spaces,
Sobolev spaces, and so forth. There are many commonly used function
spaces that are “XY-pairs,” as will be illustrated in the remark after
the theorem.

Theorem 1. (Regularity Lifting) Suppose Banach spaces X,Y are an
“XY-pair”, both contained in some larger topological space V satisfying
properties described above. Let X and %) be closed subsets of X and'Y
respectively. Suppose T : X — X is contracting:

ITf—Tgllx <nllf —gllx, YV fig€X and for some 0 <n< 1; (4)
and T :) —Y is shrinking:
ITglly <0llglly, Vg €2, and for some 0 < < 1. (5)



Define
Sf=Tf+F forsome FeXng.

Moreover, assume that
S:XxXNY-xnY. (6)
Then there exists a unique solution u of equation
u=Tu+F in X,

and more importantly,
uey.

Remark 1. In some situations, one can choose X = X and 9 =Y.

In practice, if one knows that a solution u of u = Su belongs to
X (usually with lower regularity), then by Theorem 1, one can lift the
regularity of v up to u € X NY (with higher regularity).

Remark 2. “XY-pairs” are quite common, as one can see from the
following examples.

e X =ILP(U)for 1 <p<oo,Y=C%U)for0<a<l,and V
is the space of distributions. Here U can be any subset of R™ or
R™ itself.

e X is a Banach space, Y is a reflexive Banach space, and both
are in some bigger topological space, V. Of course, we assume
V' is Hausdorff and has topology weaker than the topology of X
and the weak topology of Y. Then for any u,, — u € X and
lunlly < C, we have u €Y.

Notice that all Hilbert spaces, such as L?, H', and H?2, are re-
flexive Banach spaces.



Periodic fronts for nonlocal equations
Coville, J. Davila, S. Martinez

The main objective is to construct pulsating front solutions of the
evolution equation

uy=Jxu—u+ f(r,u) teR zeR". (0.1)

We assume that J : RY — R satisfies

JZ(),/ J=1,J(0) >0,
RN
J is smooth, symmetric with support contained in the unit ball,
and that f: RY x [0,0c) — R is [0, 1]¥-periodic in z, that is,
flx+k,u)= f(z,u) VkeZ",

and satisfies:

f € C*RY x [0, c)),

f('7 O) = O:

f(x,u)/u is decreasing with respect to u on (0, 4+0c),

there exists M > 0 such that f(z,u) <0 for all u > M and all z.

The model example is

fl,u) = ufa(z) —u)

where a(z) is periodic C.
We will assume in what follows that the stationary problem

0=Jxu—u+ f(z,u) xeRY (0.2)

has a positive periodic continuous solution p(z). Some authors [1, 5, 6]
have already identified a condition characterizing the existence of a
positive stationary solution, and also proved that it is unique. This
condition says that the linearized stationary operator around zero, that
is,
—(J*¢— ¢ — fulz,0)9)

considered on the space of periodic continuous functions, has a negative
principal eigenvalue.

Let e be a unit vector in R, ¢ € R and p be the positive periodic

continuous solution of (0.2). We say that a solution u to (0.1) is a
periodic front propagating in the direction —e with effective speed c if

u(t+k-efe,r) =ult,x+k) VteR zeRY Vkez"



and

u(t,z) -0 ast— —oc, forallx
u(t,z) — p(xr) ast— 4oc, forall z.

The main result is the following.

Theorem 1. Given any unit vector e € RY there is a number c*(e)
such that for ¢ > c¢*(e) (0.1) has a pulsating front solution with effective
speed ¢, and for ¢ < ¢*(e) there is no such solution.

Traveling waves appear naturally in homogeneous reaction diffusion
equations, and were studied intensively starting with the pioneering
works [7, 10]. The notion of pulsating front was introduced in [14, 15],
as a generalization of traveling waves to the situation of equations with
periodic inhomogeneities. The problem of finding periodic fronts in
some contexts, i.e. discrete setting, or elliptic differential operators,
has been addressed by many authors [2, 3, 4, 8, 9, 12, 11, 16]. The
problem of findind spreading speeds for the nonlocal equation (0.1) is
considered in [13].
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Title:Spreading speed revisited—A free boundary approach
Prof. Yihong Du

Much previous mathematical investigation on the spreading of
population was based on the diffusive logistic equation over the entire
space RV:

uy — dAu = au(l —u), t >0, z € RY, (0.3)

where a and d are positive constants. In the pioneering works of
Fisher (1937) and Kolmogorov et al (1937), for space dimension
N =1, traveling wave solutions have been found for (0.3): For any
l¢| > ¢ := 2V/ad, there exists a solution u(t, z) := W (x — ct) with the
property that

W'(y) < 0fory e R, W(—oc) =1, W(+oc)=0;

no such solution exists if |¢| < ¢*. The number ¢* is called the
minimal speed of the traveling waves. ¢* is also known as the
spreading speed of a new population u(t, z) (governed by the above
logistic equation) with initial distribution u(0, z) confined to a
compact set of z (i.e., u(0,2) = 0 outside a compact set): For such
u(t, x), it was shown by Aronson and Weinberger (1978) that

lim ult,z) =1, lim u(t,z) =0

t—oc, |z|<(c*—e€)t t—oc, |z|>(c*+€)t
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for any small € > 0. These results have motivated extensive research
on traveling wave solutions and the spreading speed in several
directions. In this talk, I will report recent joint work with Zhigui Lin
and Zongming Guo, where we use the diffusive logistic model with a
free boundary to describe the spreading of a new or invasive species,
with the free boundary representing the expanding front. We prove a
spreading-vanishing dichotomy for this model, namely the species
either successfully spreads to all the new environment and stabilizes
at a positive equilibrium state, or it fails to establish and dies out in
the long run. Moreover, we show that when spreading occurs, for
large time, the expanding front moves asymptotically at a constant
speed. This asymptotic spreading speed is uniquely determined by an
elliptic problem induced from the original model, and is different from
¢* mentioned above.

Title: Phase transitions, stability and symmetry
Prof. A. Farina

Attached

Title: Regularity issues and Liouville theorems for 4th order equations
Prof. N. Ghoussoub

Title: Axial Symmetry of Some Entire Solutions of Nonlinear Elliptic

Equations
Prof. Changfeng Gui

In this talk, I will present some recent results on the axial symmetry
of certain entire solutions which are anisotropic. The type of solutions
includes stationary solutions for nonlinear Schrodinger equation,
saddle solutions and traveling wave solutions for Allen-Cahn
equations.



Phase transitions, stability and symmetry

Alberto Farina

Université de Picardie Jules Verne
LAMFA, CNRS UMR 6140

Amiens, France

In 1978 E.De Giorgi [4] posed the following question : Let u € C?(RY,[~1,1]) satisfy

—Au=u—u and ;TU >0 (1)
N
in the whole RY .

Is it true that all the level sets of u are hyperplanes, at least if N <8 ?

Equivalently, De Giorgi’s conjecture can be reformulated by saying that the considered

solution u is 1D, that is, it depends only on one variable (up to rotations).

De Giorgi’s conjecture is settled for N = 2,3 ([10],[2]). When 4 < N < 8, the conjec-
ture is still open and no counterexample is available (not even for more general semilinear
equations). For N > 9, in [5] the authors have constructed a solution of (1), which is not

1D. This implies that the assumption N < 8 in De Giorgi’s conjecture cannot be removed.

The PDE in (1) is the well-known Allen-Cahn equation arising in phase transition
problems [1] and a possible motivation for the conjecture is the following : let u be as in
De Giorgi’s conjecture, € > 0 and let u.(x) := u(z/€). The monotonicity assumption in De

Giorgi’s conjecture seems to suggest that :
e the level sets of u (and thus those of u.) are graphs over R 1,
e the phase transition happens in a straight, minimal way.

Thus, when € — 07, the level sets of u are closer and closer (in a suitable way ([11],[12],[3]))

to entire minimal graphs ¢ over RY"1!, ie. a solution of

Ve

V14 [Vel?

=0 in RML (2)

Since entire minimal graphs are flat for N — 1 < 7, due to Bernstein-type Theorems, it

follows that the level sets of u. are close to a flat hyperplane.
Here N <8 is crucial!

Now, since elliptic problems are somehow “rigid”, we may suspect that once the level
set {u. = ¢} is close enough to a hyperplane, it is a hyperplane itself. By scaling back, this
would give that {u = ¢} is a hyperplane.

Then, the level sets of u would be parallel hyperplanes and thus u would be 1D, as

asked by De Giorgi’s conjecture.



In the previous (heuristic) argument some gaps have to be filled :

e no minimality condition is explicitly required in De Giorgi’s conjecture, so the results

about the asymptotic behavior of minimizers are not directly applicable,

e the monotonicity condition does not assure, in principle, that the level sets of u are entire

graphs over RV, so Bernstein-type results are not directly applicable,

e one would need to proof the rigidity argument.

In this talk we discuss how (and how much of) this program can be carried out. We also
present the recent progress on the De Giorgi’s conjecture and its generalizations, for N > 4
([6],[71,[8],[9],[13]). To this end we introduce the notion of stable solution of the semilinear
equation —Au = f(u), f € O, and then we prove some one-dimensional symmetry results
for this class of solutions. In particular, since monotone solutions and local minimizers are
special cases of stable solutions, any classification result (1D symmetry result) about stable

solutions immediately gives an answer to De Giorgi’s conjecture.
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Title: A Gradient Bound for Free Boundaries

Prof. David Jerison

The gradient bound for minimal graphs of Bombieri, De Giorgi and
Miranda says that every solution to the minimal surface equation

\Y
div | ————— | =0
V1+ [ Vu?
in By, the ball of radius 2, satisfies
max |Vu| < C
B

where (' depends only on dimension and the oscillation of u,

max ¢ — min u
B> Bs

Following the celebrated results of De Giorgi and Nash, the method of
Moser shows that the gradient bound leads to smoothness of solutions
u.

Consider the functional

5@) = [ [V + xR RO
Q

and a minimizer v of J; among all functions with boundary conditions
v = f on 0f2. We will only discuss the one-phase case, that is, we
assume f > 0, so that u > 0. Denote the positive phase of u by

QO (u) = {z € Q:u(z) > 0}

Thus v = 0 in Q\Q2*(u). The interface between the positive phase and
the zero phase is known as the free boundary,

F(u) = QN a0t (u)
The Euler-Lagrange equations for the minimizer u are
Au=0 on Q" (u)
IVu|=1 on F(u)
The boundary condition is valid in a suitable weak sense.

In 1981, Alt and Caffarelli showed that there is a deep analogy be-
tween minimal surfaces and free boundaries F'(u). They proved that
the free boundary has finite (n — 1)-Hausdorff measure and is smooth
except on a set of zero (n — 1)-Hausdorff measure. On the smooth sub-
set, the free boundary condition |Vu| = 1 is valid in the ordinary sense.

Since then many results that deepen this analogy have been obtained.
We will discuss a few of them.
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Daniela de Silva and I showed (in J. Reine Angew. Math. 2009)
that, as in the case of area-minimizing hypersurfaces, there is a critical
dimension above which minimizers need not be smooth. In this talk
we discuss further joint work establishing the analogue of the classical
gradient bound for minimal surfaces. In particular, our bound implies
that energy-minimizing free-boundary graphs are smooth in all dimen-
sions. Qur proof also gives a new way to demonstrate the classical
minimal surface gradient bound as well. The way these two proofs are
related reveals parallels between free boundaries and minimal surfaces
that I expect to have an impact on the theory of semilinear functionals.

An application of smoothness of graph solutions in high dimensions is
suggested by work of my PhD student Nikola Kamburov. He considers
the functional

Jo(v) = / Vol + X{—1<v<1}
0

A minimizer u of Jy (minimizing over all domains @ C R™ and all
functions sharing the same boundary values on J€2) has Euler-Lagrange
equations

Au=0 on{-1l<u<1}
IVu|=1 on F(u)

where this time the free boundary F'(u) has two pieces, namely, the
interface between {—1 < u < 1} and u = 1 and the interface be-
tween {—1 < u < 1} and v = —1. This is a singular limit of func-
tionals resembling de Giorgi functional, with a two-well potential. As
in the case of de Giorgi’s functional, work of Caffarelli and Cordoba
(strengthening the results of Modica) shows that the blow-down of the
set {—1 < u < 1} is a global minimal surface.

Kamburov has constructed global minimizers in dimension 9 or more,
whose level sets are graphs but not planes. His proof uses the important
construction of supersolutions of Del Pino, Kowalczyk and Wei, but
does not require their iteration. The regularity theory described above
can be expected to lead to infinite differentiability of the level sets of
Kamburov’s global solutions.



Doubling and desingularization constructions for minimal surfaces.

Prof. N. Kapoulous

By a doubling construction we mean the construction of minimal
surfaces based on a given minimal surface 3 in a Riemannian three-
manifold as follows. Each minimal surface M constructed is smooth
and can be written as the union M = X; U Xy U B where X; and X,
approximate two copies of & and B = UY | B; is the union of N annuli
approximating catenoidal bridges B; connecting 3; and X,. More pre-
cisely, X; and ¥y are graphs of two small in C?-norm functions ¢; and
@2 over ¥\ MY, D;, the given surface with N small discs D; removed,
and the boundary of each B; is the union of the boundary circles of
31 and 35 over 9D;. It is expected in general that as the number of
bridges N tends to oc, their size tends to 0, and M tends as a varifold
to a double covering of 3.



Title: Minimal surfaces and entire solutions of Allen-Cahn equation
Prof. M. Kowalczyk

This is a joint work with Manuel del Pino and J. Wei
We consider the Allen-Cahn equation
Au+(1—v*)u=0 inR". (0.4)
E. De Giorgi [3] formulated in 1978 the following celebrated conjecture:

(DG) Let u be a bounded solution of equation (0.4) such that Oy, u >
0. Then the level sets [u = M| are hyperplanes, at least for dimension
N <8.

Equivalently, under the above conditions the statement asserts the
existence of a« € RV, b € R, |a| = 1 such that u has the form

u(z) =w(a- -z —b)
where w(t) is the unique solution of
w' + (1 —ww =0, w(0)=0, w(dtoc)==l,

namely w(t) = tanh(t/v/2). De Giorgi conjecture has been proven
in dimensions N = 2 by Ghoussoub and Gui [6] and for N = 3 by
Ambrosio and Cabré [1]. Savin [7] proved its validity for 4 < N < 8
under a mild additional assumption. (DG) is a statement parallel to
Bernstein’s theorem for minimal graphs which in its most general form,
due to Simons [9], states that any minimal hypersurface in RY | which
is also a graph of a function of N — 1 variables, must be a hyperplane
if N < 8. Bombieri, De Giorgi and Giusti [2] proved that this fact is
false in dimension N > 9, by constructing a nontrivial entire solution
to the minimal surface equation

F
vl —L_)_-0 i R, (0.5)
V1+|VF|?

by means of the super-subsolution method. Let us write

¥ =(x1,...,28) €ER®, u=/a2+ 42, v=4 22+ --+i

The BDG solution has the form F(z') = F(u,v) with the symmetry
property F(u,v) = —F(v,u) if u > v. In addition we can show that
F becomes asymptotic to a function homogeneous of degree 3 that
vanishes on the cone u = v. Let I' = {zg = F(2')} be the minimal
BDG graph, and let us consider for o > 0 its dilation ', = o',
which is also a minimal graph. Our result, which disproves statement
(DG) in dimensions 9 or higher is the following.
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Theorem 1. [4] Let N = 9. For all « > 0 sufficiently small there
exists a bounded solution u,(x) of equation (0.4) such that

Opetia(r) >0 for all x € R,

and such that for x = y + tv(ay), where y € Ty, and v is a choice of
normal to I' we have

u(z) = w(t) + o(1),
where |t| < £ and o(1) = 0 uniformly as oo — 0.

Let us consider coordinates to describe points in R? near 'y, 2 = y+
tv(ay), yel, < %. Then we choose as a first approximation
w(z) = w(t + h(ay)) where h is a smooth, small function on T, to
be determined. Looking for a solution of the form w + ¢, the problem
becomes essentially reduced to

Ar, ¢+ 0,6+ f'(w(2))p+ E+N(¢) =0, inTy xR

where S(#) = Aw+ f(%), B = X, ca 15 S®), N(6) = F(u-+) — F()
f'(w)¢ + B(6), f(w) = w(l —w?), and B(¢) is a second order linear
operator with small coefficients, supported in {|z| < da~'}. Rather
than solving the above problem directly we consider a projected version
of it:

=Ar, ¢+ 0.0 + f'(w(z))p = —E — N(¢) + c(y)w'(z) inTq xR,

/¢ Y, 2z dz = 0 forally € I'y, (0.6)

A solution to this problem can be found in such a way that the size and
decay rate of the error E, which is roughly of the order ~ 7“(043;)‘36"2‘,
is respected (here r(ay) is the distance to the origin of the projection of
ay € T, on R®). This is made precise with the use of a linear theory for
the projected problem in weighted Sobolev norms and an application
of contraction mapping principle. Finally A is found so that ¢(y) = 0.
We have c(y) [w'?dz = [(E + N(¢))w' dz and thus we get reduced to
a (nonlocal) nonlinear PDE in I' of the form

J(R) = Arh + |APPRh = O(a)r(y) 2+ Py(h) inT, h=0 onIN[u=nu],
(0.7)

where P,(h) is a small operator which includes nonlocal terms. A
solvability theory for the Jacobi operator in weighted Sobolev norms
is then devised, with the crucial ingredient of the presence of explicit
barriers for inequalities involving the linear operator above, and as-
ymptotic curvature estimates by Simon [8]. Using this theory, problem
(0.7) is finally solved by means of contraction mapping principle. The
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monotonicity property follows from maximum principle applied to the
linear equation satisfied by O,,u.

The method described above generalizes to the construction of new
entire solutions in dimension N = 3 in [5]. We consider a minimal
surfaces M which is complete, embedded and has finite total curvature
in R®. We assume that M has m > 2 ends, and additionally that M
is non-degenerate, in the sense that its all bounded Jacobi fields can
be obtained considering rigid motions of the surface (this is known for
instance for a catenoid and for the Costa-Hoffman-Meeks surface of
any genus).

We prove that for any small « > 0, and up to rigid motions, the
Allen-Cahn equation has a family of bounded solutions depending on
m — 1 parameters. Level sets of these solutions are embedded surfaces
lying close to the blown-up surface M, := o~'M, with ends possibly
diverging logarithmically from M,. We prove that these solutions are
L*-non-degenerate up to rigid motions, and find that their Morse index
coincides with the index of the minimal surface. Our construction, and
known classification results for minimal surfaces, suggest parallels of
De Giorgi conjecture for general bounded solutions with finite Morse
index.
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Moduli spaces of complex projective structures and CMC surfaces

Prof. Rob Kusner (dedicated to my father, David Kusner, 1932-2010)

Complete embedded constant mean curvatures (CMC) surfaces in R?
are highly transcendental objects [8, 3, 12, 10, 13| whose moduli spaces
are understood in only a few special cases [1, 14, 9, 2, 6]. This talk
(reporting on joint work [5] with Karsten Grosse-Brauckmann, Nick
Korevaar and John Sullivan) discusses a surprising connection between
CMC surfaces and complex projective structures, allowing us to make
the former just a bit more explicit.

The well-known (see [4]) correspondence between projective struc-
tures and holomorphic quadratic differentials ¢(z) dz? via the holomor-
phic Hill equation

(%) Uy, +q(2)u =0,

guides our work: if ui(z),us(2) is a basis of solutions to (%), then
their ratio Z—; is the developing map for a projective structure whose
Schwarzian is ¢(z), where z is a local coordinate belonging to some
background projective structure. This makes the moduli space of pro-
jective structures over a fixed Riemann surface into a complex affine
space modeled on the vector space of quadratic differentials.

In case of coplanar k-unduloids, CMC surfaces of genus 0 with &
ends [7], the underlying Riemann surface is C with global coordinate z
(unique up to z — az+b) belonging to its standard projective structure,
and ¢(z) is a polynomial of degree k — 2 normalized to be monic with
root-sum zero. For example, the unduloids all have ¢(z) = 1 and an
exponential developing map, while all triunduloids have ¢(z) = z and
developing map given by a ratio of Airy functions. For k£ > 4, it is not
practical to solve the Hill equation (x) explicitly, so instead we perform
a careful asymptotic analysis.

Each of the k£ ends corresponds to an asymptotic half-space in the
flat metric given by |q(2)||dz|? ~ |dw|?>. We use the flat half-space
coordinate w to rewrite (x) as an O(z) perturbation of the constant
coefficient equation. This allows us to analyze growing and decaying so-
lutions on each half-space and show that the ratio of two independent
global solutions to (x) is the developing map of a k-point projective
structure: an equivalence class of the k-point spherical metrics previ-
ously used [7] to classify coplanar k-unduloids, except now two k-point
metrics are equivalent if they differ by a fractional linear map (rather
than an isometry) of S2.
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Since the quotient space of fractional linear maps by isometries is a
3-ball, the moduli space of all k-point metrics — or equivalently, of all
coplanar k-unduloids — is homeomorphic to the product of this ball with
the space of k-point projective structures, and thus to R%*—% = B? x
C*=3_ where the second factor comes from realizing k-point structures
by (affine) space of normalized polynomials of degree k —2. We already
knew [6, 7] the topology of these moduli spaces for the cases k =
3,4, but we had suspected that for £ > 5 these spaces were not even
simply connected, and thus it came as quite a surprise that they were
contractible!

An interesting question we continue to explore is how this description
for CMC moduli space compares with others, such as that coming
from spherical metrics or, more speculatively, from the holomorphic
potentials methods stemming from [3]. And although not discussed in
this talk, one hopes these ideas may also be applied to give a more
explicit description of minimal surfaces [11] in S which are cousins of
CMC surfaces in R®.
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Title: Qualitative analysis of solutions to the HLS systems
Prof. Congming Li

Attached

Title: Mean field equations of Liouville type at critical parameters.
Prof. Changshou Lin

In this talk, I will discuss mean field equation with singular data at
8mm, where m is an positive integer. In my previous joint paper with
L.C. Wang, we have proved some sufficient and necessary condition
for the existence of solution at 8 pi. In this talk, I will prove a
non-existence result of mean field equation at 16 pi when the
fundamental cell of a torus is a rectangle. The proof is a nice
combination of classical elliptic function theory and the method of
moving planes.

Title: Asymptotically periodic solutions for the NLS and related issues
Prof. A. Malchiodi

We consider a semilinear equations in R" motivated by the study of
the (focusing) Nonlinear Schroedinger Equation or of some
chemical/biological models. Inspired by some construtions in
differential geometry concerning constant mean curvature surfaces in
R?, we produce new entire solutions which decay to zero
exponentially away from three half lines, and which are
asymptotically periodic in these directions. We also prove that entire
solutions decaying away from a line must be axially symmetric.



Qualitative Analysis of Solutions to the HLS
systems

Congming Li
Univ. of Colorado at Boulder

August 9, 2010

The main object is the study of nonnegative solutions to the integral
system derived from the well known Hardy-Littlewood-Sobolev inequality in
both weighted and non-weighted form:

{ u(z) = ﬁf " %du

v(z) = |* Jro fgpeta md@/

0 < pgqg < oo, O</\<n,)\<Xi)\+oz+6<n,I$+q%:%,

R T A

We begin with a short/incomplete review of the related results and prob-
lems. The main focus is on the classification of solutions in the ‘critical-case’
and on the Liouville type theorems in the ‘subcritical case’. The well-known
Land-Emden conjecture is a Liouville type ‘theorem’ in a special case of the
‘subcritical” type HLS systems. We then present some integral type estimates
— a key ingredient in deriving both classification and the Liouville type the-
orem. As an application, we use the special integral type estimates to derive
the asymptotic expansion of the solutions at infinity as well as at the possible
interior singular point.

The talk will consist with five main parts:

1: The ‘Uniqueness’ of Nonlinear Differential and Integral Systems:
Liouville Type Theorems and Classification

2:  Hardy-Littlewood-Sobolev Inequality and Its Euler-Lagrange Equa-
tions.



3: The Role of Symmetry, Integrability, and Asymptotics.
4: The Radial Symmetry: the MMP and the Regularity Lifting

5: The Asymptotic via the Optimal Integrability- a recent work.

The following local estimate will be discussed in detail:

Assume \q + f(q+ 1) > n., then for any 0 < 6 < « and % > O‘T_e, we
have |z|%u(x) € L}, (R"). In particular, |z|*u(x) € L} (R") for any r < "

loc loc a—0"

which means |z|*u(z) is ALMOST locally bounded.

This result shows the optimal local integrability of |z|’u(z). In fact, one
can prove |x|%u(x) > Ixﬁ%’ which implies that

1
|x‘o<—9

llz"u()] > C

s = o0

as long as > n/(a — 0).
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Title: Front propagation for nonlinear diffusion equations on the hyper-
bolic space.
Prof. H. Matano

In this talk I will discuss the front propagation for the Allen-Cahn
equation and the KPP type equation on the hyperbolic space H".
More precisely, I consider the equation

u = Agu + f(u),x € H,

where Ag stands for the Laplace-Beltrami operator. The nonlinearity
f is either of the bistable type with 0 and 1 being the two stable
zeros, or of the KPP type with f(0) = f(1) =0, f(s) >0(0< s <1).
We assume that the initial data u is nonnegative and compactly
supported (and uy #Z 0). Our goal is:
(a) to estimate the spreading speed of the front; (b) to show that the
shape of the front converges to a geodesic sphere (more precisely, the
level surface {u = a} with arbitrary Oa < 1 becomes a smooth surface
after finite time, and it stays within finite distance from an expanding
geodesic sphere whose geodesic radius tends to infinity with a specific
rate; (c) to show that the profile of the solution near the front area
converges to that of a “horoshperical wave”, whose meaning will be
specified later.
This is joint work with Fabio Punzo and Alberto Tesei.

Title: Renormalized area of minimal surfaces in hyperbolic space
Prof.Raff Mazzeo

I will discuss joint work with Spyros Alexakis concerning an
interesting functional (closely related to the Willmore functional) on
the space of properly embedded minimal surfaces in H® with
boundary at infinity an embedded curve in S2. The corresponding
Euler Lagrange equation can be regarded as a nonlinear nonlocal
elliptic operator on the boundary curve. Recent progress includes an
epsilon regularity theorem which controls the regularity of the
boundary curve in terms of the size of the functional in the interior.
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Constant mean curvature surfaces in homogeneous 3-manifolds
Prof. William H. Meeks III !

I will discuss some of the recent advances made in the theory of H-
surfaces in a homogeneous 3-manifold, where by H-surface I mean a
complete immersed surface of constant mean curvature H.

In 1951 H. Hopf proved the following beautiful uniqueness and em-
beddedness result for H-spheres in R®.

Theorem 2. A sphere of constant mean curvature H > 0 in R® is

d dius —.
round of radius 7

_ Hopf’s theorem has four immediate consequences. If we denote by
Mgs the moduli space of congruency classes of spheres of varying con-
stant mean curvature H in R®, then these consequences take the fol-

lowing forms.

1. Uniqueness:: Two spheres of the same constant mean curva-
ture in R® are congruent.

2. Existence/Moduli Space:: The mean curvature function H: Mpgs
— (0, o¢) is a diffeomorphism to the interval (0, oc) of its values.

3. Embeddedness/Alexandrov Embeddedness:: Constant mean
curvature spheres in R® are embedded.

4. Index 1 and Nullity 3:: Constant mean curvature spheres
in R® have index 1 and nullity 3.

The first goal of this talk is to discuss appropriate generalizations of
Hopf’s theorem by Mira, Meeks Perez and Ros to the general setting of
H-spheres in simply-connected homogeneous 3-manifolds X. I will ex-
plain how the related moduli space of varying constant mean curvature
H-spheres in X is naturally a connected interval parametrized by the
values of its mean curvature function and, depending on the topology
and geometry of X, these constant mean curvature spheres are embed-
ded or Alexandrov embedded and have index of stability at most one.
This is work in progress and not in final form. Still I plan to give an
outline of the proofs of some of the key results in this new theory and
perhaps to explain some revelent aspects of the classification of metric
Lie groups by Milnor.

A second important goal of the talk is to discuss some of the beautiful
unsolved problems in this classical subject and the special recent results
that motivate some of them.

1This material is based upon work for the NSF under Award No. DMS - 0703213.
Any opinions, findings, and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not necessarily reflect the views of the
NSF.
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Title: Prescribed Energy solutions of semilinear elliptic equations on
cylindrical domains.
Prof. Piero Montecchiari,

For a given smooth domain 2 C R*~! (n > 1) we are concerned with
the class of semilinear elliptic problems

{ w(@,y) + Wy, u(z,y)) =0,  (z,9) eRxQ

u(@,y) = 6(y) (or du(z.y) =0), (o) ERX I o

where W : Q x R = R and ¢ : Q — R are regular functions. Note
that W and ¢ do not explicitly depend on the variable x and one
recognizes that if v is a (suitably bounded) solution of (?7) then the
corresponding Energy function is conserved:

By = 3100u(z, @~ Vi, ), VeeR  (09)

where
V(u(z, ) = HIV,u(z, s /W% (z,9)) dy.

We consider the problem of finding solutions of (0.8) at prefixed

values of the Energy. For that we exploit an Energy constrained

variational argument giving applications to the Allen Cahn and
Nonlinear Schroedinger equations.

Title: Finite-energy sign-changing entire solutions for some classical
semilinear elliptic equations
Prof. M.Musso

We construct new families of finite energy sign changing solutions
with dihedral symmetry for Au —u + u? = 0 in RY, where
1 < p < &£2. This is joint work with F. Pacard and J. Wei. We also
construct sequences of sign changing solutions for some semilinear
elliptic equation which is defined on S™, with n > 3, and which is
conformally invariant. The sequence of solutions we obtain have large
energy and concentrate along some special submanifolds of S™. In any
dimension n > 3 we obtain sequences of solutions whose energy
concentrates along ¢ > 1 circles or, in dimension n > 4, which
concentrate along a two dimensional torus. This is in collaboration
with M. del Pino, F. Pacard and A. Pistoia.
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Title : The role of minimal and constant mean curvature surfaces in
some overdetermined elliptic problem.

Frank Pacard

I will report some recent work on the existence of domains on which
one can find solutions of some semilinear elliptic equation with 0 Dirich-
let data and constant Neumann data. I will describe families of solu-
tions to this overdetermined problem and explain how they are related
to minimal and constant mean curvature hypersurfaces. This is a joint
work with M. del Pino and J. Wei.
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Complete Embedded Self-Translating Surfaces under Mean Curvature
Flow.
Prof. Xuan Hien Nguyen 2

We describe a construction of complete embedded self-translating
surfaces under mean curvature flow from desingularizing the intersec-
tion of a finite family of grim reapers in general position.

The mean curvature flow is the gradient flow of the surface area; it
is the perturbation of embedded surfaces in R® that moves each point
on the surfaces along the normal direction with a speed proportional to
the mean curvature. Self-translating surfaces (STS) are surfaces that
are translated by the mean curvature flow at constant speed, so they
are eternal solutions. The work is motivated by a result of Huisken and
Sinestrari [3] in which they showed that STS can model the asymptotic
behavior for slow forming singularities of the mean curvature flow. A
detailed example of asymptotic convergence is given in Angenent and
Velazquez [2].

Although the study of STS and singularities of the mean curvature
flow are linked, few examples are available. Besides the two classic ex-
amples of a plane and a grim reaper I' = {(z,y,2) € (—%,5)xR? |y =
—logcos(x)}, Altschuler and Wu [1] showed the existence of a parabo-
loid type self-translating surfaces that are graphs over convex domains
in R2, with a prescribed angle of contact to the boundary cylinder.
The author constructed STS by desingularizing the intersection of a
grim reaper cylinder and a plane [5]. In this article, we generalize the
previous result and show that we can desingularize the intersection of
a finite family of grim reapers to obtain a STS.

Main result

Let us consider a finite family of grim reaper cylinders, {Fn ne1>
where each F is a translated copy of T of the previous paragraph. If
no three I's intersect on the same line, and no two [’s have the same
asymptotic plane, then it is possible to find a complete embedded self-
translating surface M that is close to U, T, (in the L® norm) with M

decaying exponentially to the ends of J, Fn at infinity.

The result presented also applies to desingularizing intersection of
vertical planes to obtain minimal surfaces, provided no three planes

2This work is partially supported by the National Science Foundation, Grant
No. DMS-0710701.
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intersect on the same line, and no two planes are parallel. Ours is a
generalization of the construction of singly periodic minimal surfaces
by Traizet [6].

The proof is inspired by techniques used by Kapouleas in his con-
struction of minimal surfaces from a family of catenoids [4]. The idea is
to first construct an initial surface by replacing the intersections with
pieces of Scherk minimal surfaces. The exact solution will be obtained
as a graph of a small function over the initial surface. The function is
the solution to a nonlinear second order elliptic differential equation on
the initial surface, with exponential decay at infinity. Unfortunately,
the corresponding linear operator has small eigenvalues. Another diffi-
culty comes from the fact that we need to ensure exponential decay of
the solution. In the talk, we will present the main steps with pictures,
underlining the difficulties encountered and how to circumvent them.
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Title:Symmetry properties of nonnegative solutions of elliptic equations
Prof.Peter Polacik

We consider the Dirichlet problem for a class of fully nonlinear elliptic
equations on a bounded domain 2. We assume that (2 is symmetric
about a hyperplane H and convex in the direction perpendicular to

H. By a well-known result of Gidas, Ni and Nirenberg and its
generalizations, all positive solutions are reflectionally symmetric
about H and decreasing away from the hyperplane in the direction
orthogonal H. For nonnegative solutions, this result is not always
true. We show that, nonetheless, the symmetry part of the result
remains valid for nonnegative solutions: any nonnegative solution u is
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symmetric about H. Moreover, we prove that if u #Z 0, then the nodal
set of u divides the domain 2 into a finite number of reflectionally
symmetric subdomains in which v has the usual Gidas-Ni-Nirenberg
symmetry and monotonicity properties. We also show several
examples of nonnegative solutions with a nonempty interior nodal set.

Title: Isoperimetric-type inequalities and eigenvalues
Prof. Jesse Ratzkin

Attached

Title: 3D travelling waves foor mean curvature motion and unbalanced
Allen-Cahn
Prof. Jean-Michel Roquejoffre

Title: Hybrid solutions for a semilinear elliptic PDE
Prof. Paul Rabinowitz

For certain problems, variational methods have been developed which
find new solutions by gluing together mountain pass solutions (or
minima). For a class of problems where both mountain pass solutions
and minima coexist, we show how to glue them together, obtaining
"hybrid’ solutions.

Title: Global minimizers of the nonlocal isoperimetric problem in two
dimensions
Prof. P. Sternberg

Attached
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Isoperimetric-type inequalities and Eigenvalues

1 Introduction

The history of isoperimetric-type inequalities stretches back well over 100 years. In particular,
St. Venant conjectured in the 1880’s that a round beam is the strongest, among all beams with
a given cross-sectional area. At approximately the same time, Rayleigh conjectured that a round
drumhead makes the lowest note among all drumheads with a given area. Both these conjectures
were proven in the early and middle of the last century. To make the statements more precise,
we need to introduce some notation.

Let D C R™ be a bounded domain with a locally Lipschitz boundary, which satisfies a uniform
cone condition. The fundamental frequency (i.e. the first Dirichlet eigenvalue of the Laplacian
on D) A\ (D) is defined by

fD |Vu|?
Jpu?

Under the stated conditions on the domain, a minimizer ¢ exists and solves the boundary value
problem

A (D) = inf{ u € Wol’Q(D)} . (1)

Agp+M(D)p=0,  ¢lyp=0. (2)
Similarly, the torsional rigidity P(D) is defined by
\V4 2
A fD‘iul cue LYD)NWy?(D) p. (3)
P(D) (Jpu)

As is the case for the fundamental frequency, a minimizer ¢ exists and solves the boundary value
problem

Ad) +2= 07 ¢|8D = Oa (4)

and, in fact one can recover the torsional rigidity as

P(D) =2/Du.

We can now state St. Venant’s principle as P(D) < P(D*), where D* is a round ball with the
same volume as D. Similarly, Rayleigh’s conjecture, now known as the Faber-Krahn theorem,
says A\1(D) > A1(D*). In both cases one achieves equality only if D = D* almost everywhere.
Moreover, one can prove both these inequalities by rearranging a test function for the relevant
quotient.

2 Eigenvalues of domains in cones

We introduce some terminology to state a theorem regarding A;(D), where D lies inside a cone.
LetQ) C Sifl be a convex domain in the upper unit hemisphere, and let

W={(rd):r>0,0cQ}
be the cone over2 . For r¢g > 0 let

S(ro) =WnNB. (0) ={(r0):0<r <rp,0 € Q}



be the sector of radius rg in W. Notice that, if ¢ is the first Dirichlet eigenfunction ofQ2 , with
eigenvalue p, then

w(rd) =), o= "4 (22">2+u (5)

is a positive, harmonic function with zero boundary data on OW.
The following theorem extends a two-dimensional result of Payne and Weinberger to all di-
mensions.

Theorem 1. (-) Let D C W be a bounded, locally Lipschitz domain with a uniform cone condi-

tion, and choose 1y so that
[ v
S(T‘()) D

Then A1 (D) > M\ (S(ro)), with equality if and only if D = S(rg) almost everywhere.

The key tool in the proof of the theorem directly above is the following weighted isoperimetric
inequality.

Proposition 2. Let D C W be a bounded, locally Lipschitz domain with a uniform cone condition.

Then
Sats 2 2\
/ w?dA > (2a—|—2)/w2dv , a=a+ 22— n + 1,
8D D 2 2

with equality if and only if D = S(ro) almost everywhere for some rq.

3 Interpolation results

Tom Carroll and I have discovered a one-parameter family of variational problems which inter-
polate between the fundamental frequency and torsional rigidity defined above.

Definition 1. Let ifn =2 let p > 1, and if n > 3 let 1 < p < % For a smooth, bounded
domain D C R™ define
\V4 2
Cp(D) = inf {M cu € LP(D)N W&’Q(D)} = inf® ,(u).

(/o “p)g/p .

Critical points of the functional® , satisfy the well-known PDE
Ap+ APt =0 (6)

for some Lagrange multiplierA . Standard results in PDE tell us that, in the stated range of the
exponent p, a positive minimizer ¢ exists for the functional® ,, and it is fairly straight-forward
to derive scaling laws.

Theorem 3. (Carroll, -) If 1 < p < q then
Vol(D)*?C,(D) > Vol(D)*C,(D).
Notice that the inequality in this theorem is always strict.

Theorem 4. (Carroll, -) Let D* be the ball with the same volume as D. Then Cp,(D) > Cp(D*),
with equality if and only if D = D* almost everywhere.

Some remarks are in order. First, we recover several inequalities relating A;(D) and P(D),
which one can find in Polya and Szeg&’s book. Second, the PDE (6) is attached to a huge
literature, and our primary goal is to point out another natural source of this equation. Third,
we see this as an interpolation result, and so we hope that one can use the functionals® , and
the continuity method to derive estimates for A\; (D) from estimates for P(D), or vice-versa.



Global minimizers of the nonlocal isoperimetric problem in two dimensions

P. Sternberg, Indiana University

Abstract

In this talk we analyze the minimization of the so-called nonlocal isoperimetric problem
(NLIP) posed on the flat 2-torus. The nonlocal isoperimetric problem (NLIP) is given
by

1
minimize E,(u) = 5/ |Vul —|—'y/ |Vo|? d, (0.1)
T2 T2

over all u € BV (T?,{£1}) satisfying
/ udr =m
T2

—Av=u—m inT? with / vdr = 0. (0.2)
T2

and v satisfying

Here T? is the flat 2-torus and the first term in E., computes the perimeter of the set
{z : u(x) = 1}. For a specific range of m-values and for y small, we show that the global
minimizer is lamellar; that is, the set {z : u(z) = 1} is simply a strip.

The problem (NLIP) arises, up to a constant factor, as thel' -limit as ¢ — 0 of
the well-studied Ohta-Kawasaki sequence of functionals E. ., which model microphase
separation of diblock copolymers, [3]:

Joo §|Vul? + G222 4 | Vo2de ifue HY(T?)

and [, udz =m,

Es,’y(u) = (03)

400 otherwise,

where again v satisfies (0.2). There is an extensive literature exploring the energy land-
scape for E. , in two and three dimensions, whether posed on the flat torus (i.e. with
periodic boundary conditions) or on a general domain with homogeneous Neumann data,
cf. e.g. [1, 5,6, 7, 8,9]. The picture is quite rich and complicated, with the diffuse in-
terface sometimes bounding one or more strips, wriggled strips, discs or ovals.

Much the same richness exists for the energy landscape of (NLIP). As such, indepen-
dent of its connection to Ohta-Kawasaki, (NLIP) attracts interest as a rather canonical
nonlocal perturbation of the classical isoperimetric problem. Indeed, as a model for
pattern formation, (NLIP) sets up a basic competition between low surface area (the
perimeter term) and high oscillation (the nonlocal term).

In three dimensions, computations reveal a wide array of stable critical points, with
the free boundary d{z : u(z) = 1} consisting of one or more pairs of parallel planes,
one or more spheres, cylinders or even hypersurfaces resembling more exotic triply peri-
odic constant mean curvature surfaces such as gyroids, depending on where in the (m,y)



parameter space one looks. With few exceptions, however, rigorous proofs of stability
for particular patterns are rare, and to our knowledge, there are no proofs of global or
even local minimality of specific critical points. In this regard, we mention the inter-
esting investigation of [4], in which the authors seek to show that a lamellar (striped)
pattern minimizes energy for a slightly different model related to diblock copolymers.
Commenting on the inherent difficulty in picking out such a pattern as the “winner” in
an energy landscape full of locally minimizing competitors, the authors of [4] remark,
“...when comparing a striped pattern with arbitrary multidimensional patterns we know
of no rigorous results, for any system.” We also note the recent work [2] on a charac-
terization of minimizers in a related model including screened Coulomb interaction in
the setting of small volume fraction. There the author shows that minimizers form a
collection of nearly identical circular droplets.

Here we have chosen to focus on the two-dimensional setting of (NLIP) with 7 small
in order to present what is perhaps the first rigorous proof that a particular pattern is
globally minimizing.

This research represents joint work with Thsan Topaloglu.
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REGULARITY OF STABLE PHASE INTERFACES
IN THE VAN DER WAALS-CAHN-HILLIARD THEORY

YOSHIHIRO TONEGAWA

Let? C R™ (n > 2) be a bounded domain and consider the family of van der Waals—-
Cahn—Hilliard energy functionals E., € € (0, 1), ([2]; see also [8]) given by

m R

where u : © — R belongs to the Sobolev space H'(Q) = {u € L*(Q) : Vu € L*(Q)}
and W : R — R* U {0} is a given C? double-well potential function with (precisely two)
strict minima at £1 with W(£1) = 0. In case W(u) € L'(Q), we set E.(u) = +00. When
e — 0% with E.(u.) remaining bounded independently of ¢, it is clear (from the bound on
the second term of the integral above) that u. must stay close to =1 on a bulk region in
2 and typically (i.e. in case the sets {u. ~ 1} and {u. =~ —1} each has measure > a fixed
proportion of the measure of 2 ) there is a transition layer of thickness O(¢), which we may
call an “interface region” or a “diffused interface”.

In the past few decades it has been established that in the presence of a uniform bound
on the energy F.(u.) and under natural variational hypotheses on wu. of varying degrees
of generality, for small ¢ > 0, the interface region corresponding to u. is close to a (weak)
minimal hypersurface V' of Q (the “limit-interface” as e — 07) and that E.(u.) approximates
a fixed multiple of the (n — 1)-dimensional area of this hypersurface. Modica ([7]) and
Sternberg ([11]) established this, in the framework ofl" -convergence, for absolutely energy
minimizing wu.; they proved that the limit-interface V' is locally area minimizing in that
case, and hence by the well known regularity theory for locally area minimizing currents,
it is smooth away from a possible closed singular set of codimension > 7; Kohn-Sternberg
([5]) extended the result for locally energy minimizing u.. More recently, Hutchinson and
I ([4]) showed that V' is a stationary integral varifold if u. are merely critical points of E..
Subsequently, I ([12]) showed that whenever the u. are stable critical points of E., the limit
stationary integral varifold V' is stable in the sense that V' admits a generalized second
fundamental form which satisfies the stability inequality.

Concerning smoothness of V' when the critical points u. are not assumed to be energy
minimizing, little is known beyond the following theorem ([12]): Suppose thatn =2, &; — 0
as i — oo and that {u.}2, C HY(Q) is a sequence of stable critical points of E., with
supq |ue,| + Ee,(ue;) < ¢ for all i € N and some ¢ > 0. Then for any 0 < s < 1, a
subsequence of the sequence of sets {x € Q : |ug,(x)| < s} converges locally in Hausdorff
distance to a union of non-intersecting lines. Thus in case n = 2, any stable diffused
interface must be close to non-intersecting lines for sufficiently small positive values of the
parameter €.

Can one make analogous conclusions in dimensions n > 27 Here I describe the recent
results which give a satisfactory affirmative answer to this question in all dimensions. We
show that under the same assumption of stability, for each fixed s € (0, 1), a subsequence
of the sequence of interface regions {z € Q : |u.,(x)| < s} converges locally in Hausdorff
distance to an embedded smooth stable minimal hypersurface if 2 < n < 7; for n > 8§,
the limit stable minimal hypersurface may carry a singular set of Hausdorff dimension at




most n — 8. As mentioned before, this regularity result was known for the limit-interfaces
corresponding to sequences {u,, } of energy minimizers since in that case the limit-interfaces
are area-minimizing. The new result is that the stability hypothesis, which is much weaker
than the energy minimizing assumption, suffices to guarantee the same regularity of the
limit-interface.

The main reason why, in [12], the interface regularity was established only in case n = 2
and not for n > 2 was that while the structure of a stationary 1-dimensional varifold was
known (due to the work of Allard and Almgren ([1])), there was no sufficiently general reg-
ularity theory available at the time for stable codimension 1 integral varifolds of arbitrary
dimension. The essential new input to this problem is the recent regularity theory of Wick-
ramasckera ([13]), which gives a necessary and sufficient geometric structural condition for a
stable codimension 1 integral varifold to be regular. The limit-interfaces in question satisfy
precisely this structural condition; their regularity then follows directly from the general
theory of [13].

While the present work as well as the series of works mentioned above ([7, 11, 4, 12])
investigate the general character of limit-interfaces, there have been a number of articles
which address the question of existence of critical points of (1) whose interface regions
converge to a given minimal hypersurface. In this direction we mention the work by Pacard—
Ritoré ([10]), Kowalczyk ([6]) and a number of recent joint works by del Pino, Kowalczyk,
Pacard, Wei and Yang (see the recent survey paper by Pacard [9] for a complete list of
references). The work of del Pino-Kowalczyk-Wei ([3]) in particular shows that singular
limit-interfaces do occur in dimensions n > 8, demonstrating that the result in fact gives
the best possible general dimension estimate on the singular set of a stable limit-interface.

This is a joint work with Neshan Wickramasekera of University of Cambridge.
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Attached

Title:Some nonlinear problems with fractional laplacians
Prof. Yannick Sire

I will describe in this talk several results related to the following
equation

(=A)’u = Af(u)

where s € (0,1) and (—A)*® stands for the fractional laplacian. In a
first part of the talk, I will describe symmetry properties of stable
solutions of the problem, whatever the nonlinearity is. In the spitit of
the De Giorgi con=jecture, I will provide several 1D symmetry results
for monotone solutions i.e. : Let u € CZ (R*) be a bounded solution

with n = 2 and f locally Lipschitz. Suppose that
Bypti > 0. (0.10)

Then, there exist w € S! and u, : R — R such that

u(y) = vo(w - )

for any y € R”.
I will give a proof based on Liouville theorem and a characterization
of stable solutions.
As far as radial stable solutions are concerned, there is a value A, of
the parameter A such that

e for 0 < A\ < X\, there exists a minimal solution u,. In addition,
uy is semi-stable and increasing with A.

e for A = A", the function u* = limy _») u, is a weak solution. We
call \* the extremal value of the parameter and u* the extremal
solution.

e for A > \*, there is no solution.

I will describe several results concerning the regularity of the
extremal solution: assume n > 2 and let u* be the extremal solution.
We have that:

(a) If n < 2(s+ 24 1/2(s+ 1)) then u* € L>=(By).

(b) If n > 2(s + 2+ /2(s + 1)), then for any
p<n/2—1—+/n—1-s, there exists a constant C' > 0 such that
u*(z) < Clz|~* for all z € By.

In a second part of the talk, I will describe several results related to
the special nonlinearity given by the power nonlinearity with the
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critical exponent, namely
+2
(=A)*u = un2.

I will describe a concentration-compactness result for sequences in
fractional Sobolev spaces and as a consequence provide a
concentration result for a subcritical approximation of the previous
equation.

Title: Thermal Insulation via Anisotropic Costings
Prof. Xuefeng Wang

Attached



Thermal Insulation via Anisotropic Coatings
Xuefeng Wang
Tulane University
New Orleans, USA

Of concern is the thermal insulation abilities/properties of anisotropic materials. This
is motivated by significant engineering applications of nano-composite materials which, at
the macroscale, commonly exhibit anisotropy. Our physical goal is to efficiently protect a
conducting body(2 ; from overheating by an anisotropically conducting coating() 5, thin
compared to the scale of the body (see Figure 1). An example of such is a space shuttle
coated by a nano-insulator; another example is the inner coating of the combustion chamber
of a turbine engine. One of the central questions is: how thin can the coating be if we know
how small the thermal tensor of the insulator is?

To answer this question, we use eigen-analysis, finding that the following scaling law

(1) lim — =0

ensures good insulation of the body() ;, where § is the thickness of the coating(2 5, and o is
a parameter proportional to the thermal conductivity of the coating. On the other hand, we
study directly the heat equation with both Dirichlet and Robin boundary conditions on the
outer boundary of the coating() 5: we identify scaling relations among the thermal tensor
and thickness of the coating, and the thermal transport coefficient, such that the effective
boundary conditions on the boundary of the body() ; are Dirichlet, Robin and Neumann,
with the last one ensuring good insulation of the body. In particular, from this point of view
the scaling law

(2) lim = =0

ensures effective Neumann boundary condition on 0€2; and hence good insulation off2 ;.
We also find that all these results hold, regardless of the thermal conductivity of the
coating in the directions tangent to the boundary of the body, as long as the coating is
“optimally aligend”and the conductivity is bounded; thus the tangent directions can be left
out, safely, of the thermal consideration, leaving room for mechanical considerations such as
elasticity. By optimal alignment ofQ2 » we mean that in{2 5 the direction normal to 02 is
an eigenvector of the thermal tensor corresponding to its smallest eigenvalue. (In this case,
o in both Laws (1) and (2) is proportional to the thermal conductivity of the coating in the
normal direction.) This allows us to take the full advantages of the anisotropy.
Very recently, we find that under the scaling law
(3) ﬁﬁﬁ%z&e>0
the maximal time duration when the body is effectively well-insulated is large and at the
order of 47 ¢, and in this case we establish the convergence rate of the temperature function
to the solution of the limiting problem inside the body. We also find that in the case of
optimally aligned coating, if the thermal conductivity of the coating in the tangent directions



Q,

FIGURE 1. Qs is uniformly thick and its thickness = ¢

is unbounded as ¢ — 0, then the effective boundary condition on the boundary of the body
may be Wentzell’'s boundary condition.

The results described above come from the joint work with Jingyu Li, Steve Rosencrans,
Guojing Zhang and Kaijun Zhang, and the on-going thesis of Cody Pond.
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Infinitely many positive solutions for an elliptic problem with critical
or super-critical growth
Prof. Shusen Yan

This is a joint work with J. Wei
We consider the following equation with super-critical growth:

N+2 .
{—Au—uN 2. u>0 inD, (0.11)
u=0, on 0D,
where m > 1 is a positive integer, D is a bounded domain in RN ™,
and N > 3. Note that 2%Z is the critical exponent in RY. So it is

super-critical in RV+t™.

Pohozaev identity shows that if n > 0, (0.11) has no solution if D is
star-shaped. On the other hand, if n = 0, Bahri and Coron proved that
if D has non-trivial homology, (0.11) has a solution. A problem raised
by Rabinowitz is whether the non-triviality of the domain topology
can guarantee the existence of at least one positive solution for the
following problem

{—Au =uP, u>0 1in (0.12)

u =0, on 0f2,

Mt2 - This was answered
negatively by Passaseo by means of an example for N > 4 and p > %—J_’é
Our aim is to prove that (0.11) has infinitely many positive solutions
if the domain D satisfies certain conditions. We assume that D is a
torus-like domain satisfying the following condition:

(R): Write y = (y*, ™), y* € R¥"! and y** € R™".. Then y € D if
and only if (y*, |y**|,0,---,0) € D.

For any D satisfying (R), we look for a solution of the form u(y) =
u(y*, [y**]) for (0.11). Let

Q= {(,yn) €RY : (¥",yn,0,---,0) € D},

where RY ={y: y € RV, yy > 0}. Then (0.11) is transformed to the
following problem:

where  is a bounded domain in RY, p >

{—div(yﬁDu) =yPu? "L u>0, yeQ,

To obtain a solution for (0.13), we impose the following condition on
Q:
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(€1): There is a ag > 0, such that for any y € Q, yn > ag;
(Q2): Forany @ € (0,27), (rcos@,rsin®, ys, -+ ,yn) € Q,if (r,0,y3,- -+ ,yn) €

Q.
(Q3): /NS (2 if and Only if (ylay23y3a"' y —Yi, o ayN—layN) € Qa L=
3, N = 1;

(€): there is x* € 9Q with z* = (r*,0,--- ,0,0*) for some r* > 0 and
[* > 0, such that

O0N{yo = =yn_1 =0}NBs(z*) = {yny = ¥(11), y2 = -+ = yn_1 = 0}NB,(z*),
and

ON{y, = -+ =yn_1 =0}NBs(z*) = {ynv > ¥(n1), y2 = --- = yn_1 = 0}NBs(z"),
for some C? function ¢ and small § > 0. Moreover, r* is either
a strict local minimum point, or strict local maximum point of
.

Our main result in this paper can be stated as follows:

Theorem 3. Suppose that N > 5. If Q satisfies (1), (Q2), (),
and (§2), then problem (0.13) has infinitely many distinct positive so-
lutions.

Bubbling solutions for (0.12) were obtained by Del Pino, Felmer
and Musso if p = % + €, where € > 0 is small; and by Del Pino,
Musso and Pacard if p = %—fé — &. Our result does not involve any
perturbation. We proved the main theorem by constructing solutions

with large number of bubbles.
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Pointwise gradient estimates and rigidity results
Prof. Enrico Valdinoci

We consider bounded solutions of Au + F'(u) = 0 in possibly un-
bounded proper domains whose boundary has nonnegative mean cur-
vature.

We prove a pointwise gradient estimate of the form

1 .
§|Vu(:v)|Z < ¢y, — F(u(x)), for any = € Q,
(0.14)

where

Cy = sup  F(r).
r€[0,||u||zoc ()]

Formula (0.14), which we proved in [FV09], may be seen as an extension
of the one obtained in [Mod85], where a similar result was proved in
the case 2 = R*. The assumptions that the solution is bounded and
that the boundary has nonnegative mean curvature cannot, in general,
be removed, as simple examples show.

Remarkably, any solution satisfying (0.14) enjoys some extra prop-
erties, even independently on the curvature of the domain: indeed
if (0.14) is satisfied, then

¢, = max {F(O), F<||u||Loc(Q))}
and ¢, > F(1) for any ¢ € (o, ||u||Loc(m).

Moreover, if F'(0) > 0, then

e = F([[ull= @)

and ¢, > F(t) for any ¢ € [o, ||u||,,x(m).

In general, the strict sign holds in (0.14), and in fact, roughly speaking,1D
solutions are the exceptional ones that attains equality in (0.14). In-
deed, if equality in (0.14) holds at some non-critical point, then it holds
everywhere and the solution depends only on one Euclidean variable.
Moreover, either €2 is a halfspace or € is a strip, and the solutions may
be classified as well.

Extensions of these results to quasilinear PDEs are possible (see [CGS94]
for the case Q@ = R* and [CFV10] for proper domains)
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