
REPORT OF FOCUSED RESEARCH GROUP:

NONLINEAR DISCRETE OPTIMIZATION

BANFF JULY 2010

This is a report on the focus research group 10frg140 Nonlinear Discrete Opti-
mization, which met at BIRS during the week of July 18 to July 25, 2010. The
participants were Jesus De Loera (UC Davis, Mathematics) Raymond Hemmecke
(Darmstadt, Mathematics) Matthias Koeppe (UC Davis, Mathematics) Jon Lee
(IBM Research, Mathematical Sciences) Shmuel Onn (Technion, Industrial Engi-
neering) Robert Weismantel (Magdeburg, Mathematics) The participants looked at
the general problem of optimizing nonlinear functions over a finite space of feasible
solutions. We often assumed that the feasible solutions are the integer solutions
of integer programs defined by linear equations and inequality constraints (a con-
vex polyhedron). Without loss of generality one can assume that the optimization
problem has the form:

max/minf(x) subject to Ax = bx ≥ 0, x ∈ Z
n,

and thus the type of matrix A we have as input is quite important to define the
difficulty of the problem. Although we only managed to prove minor lemmas and
results, we had a very exciting week, full of questions, discussion, and ideas that
will carry us through for a long collaboration. Here are expand on three areas
of discussion we had. Two are about finding new extensions of very successful
techniques, the third is about a generalization of the hot area of compressed sensing:

(1) We are interested on the use of test sets for solving problems. a test set is a
finite collection of integral vectors with the property that every feasible non-
optimal solution of an integer program can be improved by adding a vector
in the test set [11]. Two of the most famous sets are Graver and Gröbner
test sets. Although test sets are normally very very large and impractical,
there is nice special case in which the linear system is of N-fold type. N-
fold systems are nice models and include multidimensional transportation
and assignment problems with mild restrictions [9, 3, 4]. The members of
the team had in prior work proved that convex integer minimization and
maximization is possible for N-fold problems. The transpose of an N-fold
integer program gives rise to a model of 2-stage stochastic integer program-
ming. In the latter case, algorithms for convex integer minimization and
maximization are significantly more complicated than for ordinary N-fold
systems, but were achieved by members of the team too. Due to their
very nice properties is desirable to generalize the concept of N-fold systems
and gain structural insight that will allow us to find similar computational
efficiency for larger classes of problems. Although our discussions yielded
so far no new major result, we produced several leads as to what possible
generalizations could exist. An important property of test sets is that they
have an integral Carathéodory property says that each integral vector in
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the positive cone generated by the columns of a matrix can be written as
a nonnegative integer combination of at most dimension many elements of
the test set. This has been useful to prove efficient termination of some
convex minimization problems for which a Graver test set is known. One of
the main open questions we discussed is whether the integral Carathéodory
property holds for other test sets besides Graver test sets.

Finally, and also related to generalizing N-fold matrices, we discussed a
question raised by Peter Gritzmann: It is well-known that totally unimod-
ular matrices A have the property that their linear integer optimization
problem can be solved in polynomial time by linear programming. Thus it
is natural to wonder whether matrices that are obtained from a unimodular
matrix from the operation of replacing its entries by a fixed matrix block
still give a nicely behaved matrix. We were able to prove this is not the
case, we found that some nasty family of NP-hard integer programs lies
within this construction.

(2) Because of applications to image processing a very exciting direction of
modern research is compressed sensing. In those areas one needs to solve
an underdetermined system of linear equations maximizing the number of
zero coefficients in the solution. Searching a solution with this constraint
is NP-hard, and so is computationally infeasible, but it was recognized (see
[10]) that solving a linear program (which runs very very efficiently) al-
ready approximates nicely the desired sparseness solution. Our observation
is that one can consider We observed that support functions maximizing
the number of zeros is a special case of a quasi-convex function (the inverse
image of any set of the form (−∞, a) is a convex set) and tried to under-
stand several variations of optimizations problems with linear constraints
and quasi-convex objective function q(x) and how to include integrality
conditions which complicate all these problems much more. Methods we
discussed include Diophantine approximation and dynamic programming,
but the ultimate goal is to find a linear or convex program that again ap-
proximates well the behavior of q(x). For example, we proved

Theorem 1. Let Di = {li, . . . , ui} and D = D1 × · · · × DN . Let U be an
upper bound on ui − li + 1. For any separable convex function f : D → R,
f(x) = f1(x1) + · · · + fN (xN ), there exists a separable convex function
g : D → Z, g(x) = g1(x1) + · · · + gN(xN ) such that

(i) f(x) ≤ f(y) if and only g(x) ≤ g(y),
(ii) the functions gi take values on their domain {l1, . . . , u1} whose binary

encoding size is bounded by a polynomial in N and U .
In fact, there exists an (inefficient) algorithm that computes this.

There are of course many open questions: Can we improve the above
result to be useful for binary-encoded upper bounds as well? Suppose
now the objective function is a separable quasi-convex function Does there
exist a convex function that refines the induced by semiorder of the quasi-
convex function. In the above “compression LP”, we could just leave out
the equations g(x) = g(y) for the x, y with f(x) = f(y) to construct a
separable convex function g that refines the semiorder if it exists. It is
open whether it exists though, i.e., whether this LP is always feasible. We
have several ideas for attacking this problem.
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(3) Finally, the members of the team have been very active on using gener-
ating function techniques (see [1, 2]), they contributed a fully polynomial
approximation scheme for the problem of optimizing

maxf(x) subject to Ax = bx ≥ 0, x ∈ Z
n.

when n is a fixed constant and f is a non-negative polynomial function,
and even with multiple objective functions (see [7, 8, 6, 5]). They also
proved that the already optimizing a degree four polynomial and n = 2 is
NP-hard, but the tantalizing question still remains what is the complexity
of the same maximization problem when f = xT Qx , Q is a 2 × 2 matrix.
Is this problem NP-hard? We think this is a fascinating simple problem
that needs to be answered.
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[7] Jesús A. De Loera, Raymond Hemmecke, Matthias Köppe, and Robert Weismantel. Integer
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