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V. Rödl (Emory)

May 23–30 2010

1 Overview
It has been known for a long time that many mathematical objects can be naturally decomposed into a ‘pseu-
dorandom’, chaotic part and/or a highly organized ‘periodic’ component. Theorems or heuristics of this type
have been used in combinatorics, harmonic analysis, dynamical systems and other parts of mathematics for
many years, but a number of results related to such ‘structural’ theorems emerged only in the last decades.
A seminal example of such a structural theorem in discrete mathematics is Szeméredi’s Regularity Lemma,
which was discovered by Szeméredi in the mid-seventies when he proved his famous result on arithmetic
progressions in dense subsets of natural numbers. It states that the set of edges of any dense graph can be
‘nearly decomposed’ into ‘pseudorandom’ bipartite graphs. The Regularity Lemma has long been recognised
as one of the most powerful tools of modern graph theory.

The aim of the meeting was to follow this structural theme and investigate structural results for sparse
combinatorial objects. The meeting brought together a number of experts in the area together with several
junior researchers and PhD students.

2 Presentations and Discussions
Each presenter described recent developments on a particular topic, outlined some of the main related open
problems, and led an interactive discussion on these results and problems. The topics addressed were as
follows.

2.1 Extremal problems for random discrete structures (M. Schacht)
We study thresholds for extremal properties of random discrete structures. We determine the threshold for
Szemerédi’s theorem on arithmetic progressions in random subsets of the integers and its multidimensional
extensions and we determine the threshold for Turán-type problems for random graphs and hypergraphs. In
particular, we verify a conjecture of Kohayakawa, Łuczak, and Rödl for Turán-type problems in random
graphs. Similar results were obtained by Conlon and Gowers.

2.2 Extremal Graph Theory – the Regularity Lemma Revisited (T. Łuczak)

For a graph H and natural numbers k and n let us define the parameter ν
(k)
χ (H,n) [ν(k)

τ (H,n)] as the
smallest a such that each H-free graph G with n vertices and the minimum degree δ(G) ≥ an can be
homomorphically mapped to Kk [some H-free graph F on k vertices]. The behavior of these two parameters
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has been studied since the early seventies, for instance, the Andrásfai-Erdős-Sós Theorem determines the
asymptotic behavior of ν

(k)
χ (Kk, n) for large n. Here we propose to concentrate on computing the infimum

of the sets {ν(k)
χ (H,n)}k and {ν(k)

τ (H,n)}k rather than finding their complete characterization. Thus, for a
graph H , we study the parameters

νχ(H) = inf
k

lim inf
n→∞

ν(k)
χ (H,n) ,

as well as
ντ (H) = inf

k
lim inf
n→∞

ν(k)
τ (H,n) .

and survey some recent results, open problems, and methods which fit the above framework.
In particular, using Szemerédi’s Regularity Lemma we reprove the result of Thomassen from 2008 who,

answering an old question of Erdős and Simonovits, showed that νχ(C2k+1) = 0 for all k ≥ 2. We also
use the Regularity Lemma together with some local resilience argument to show that ντ (Kk) = 2k−5

2k−3 for all
k ≥ 3.

This talk is based on joint work with Stéphan Thomassé.

2.3 Triangle removal lemma (Y. Person)
The theorem of Szemerédi states that for every ε > 0 and every k ∈ N there exists n0 ∈ N such that every
set A ⊆ [n] with |A| ≥ εn, n ≥ n0, contains an arithmetic progression of length k. A special case of it
is the theorem of Roth for arithmetic progressions of length 3. The best known lower bounds on ε in terms
of n come from Fourier analytic proofs and the currently best lower bound is due to Bourgain, who showed
ε = C(log log n)2

(log n)2/3 is enough. On the other hand, Ruzsa and Szemerédi observed more that 30 years ago that the
so-called triangle removal lemma yields another, purely combinatorial, proof of Roth’s theorem. This lemma
states the following.
Triangle removal lemma. For every ε > 0 there exists δ > 0 such that if G is a graph on n vertices with at
most δn3 triangles, then one can remove at most εn2 edges to make G triangle-free.

Until recently, the only known proof of this lemma was via Szemerédi’s regularity lemma and therefore
the dependency of δ−1 on ε is a tower of twos polynomial in ε−1. Quite recently, Fox gave a new proof of
the triangle removal lemma which avoids the use of the regularity lemma and shows that δ can be taken to
be a tower of twos of height 200 log ε−1. Still, the dependency of ε and n for Roth’s theorem is far from the
result of Bourgain mentioned above, but Fox’s proof suggests new perspectives and it gives better bounds for
testing if a graph is triangle-free or is far from it.

In this talk I will discuss the ideas of Fox and present his proof.

2.4 Regular subgraphs (D. Dellamonica)
A paper of Pyber, Rödl and Szemerédi shows: (I) for any k there exists ck such that any graph with maximum
degree ∆ and average degree d satisfying d ≥ ck log ∆ contains a k-regular subgraph. They also show: (II)
the existence of graphs with ∆ doubly exponential on d which do not contain 3-regular subgraphs. We discuss
results and problems related to the following questions.
Question 1: Is d ≥ ck log ∆ the lowest lower bound possible in (I)?
Question 2: What are the structural properties of graphs which do not contain regular subgraphs? It is
possible to show that graphs avoiding regular subgraphs necessarily contain subgraphs which are in some
sense similar to the random construction establishing (II). However, in order to transfer properties of the
random model used in (II) one would need a finer description of this structure.

2.5 Extremal problems for triple systems (D. Mubayi)
1. Regular substructures: Let f(n) denote the maximum number of edges in a linear triple system on n
vertices that contains no 2-regular subsystem. Here 2-regular means that every vertex lies in exactly two
edges and linear means that every two edges have at most one point in common. About ten years ago,
Verstraëte and I (using an idea of Lovász) proved that n log n < f(n) < 4n5/3. It appears that there have
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been no improvements to either of the above bounds. There are absolutely no results on this problem for
k-regular subsystems where k > 2.

2. Induced substructures: The induced Turán number exind(n, F ) of a k-uniform hypergraph is defined
as follows. Let H1 be a collection of k-element subsets of [n] that are regarded as present and H2 be a
collection of k-element subsets of

(
[n]
k

)
\ H1 that are considered as absent. Let H3 =

(
[n]
k

)
\ (H1 ∪ H2).

Suppose also that for every subset of k-subsets M of H3, the k-graph H1 ∪M contains no induced copy of
F . Then exind(n, F ) is the maximum size of H3 subject to the restrictions above. This parameter is crucial
to our understanding of the extremal theory of induced structures.

Let Gi be the (induced) 3-graph with four vertices and i edges. A few months ago I proved that (1/9)n2 <
exind(n, G1, G4) < (1/6 − c)n2 for some positive c. I conjecture that the lower bound is tight. This is
related to recent results of Razborov and Pikhurko about the usual Turán number of the family G1, G4. If the
conjecture above is true, then one can attempt to prove a much more challenging conjecture (due to Balogh
and me) that characterizes the structure of almost all 3-graphs with vertex set [n] that contain no induced copy
of G1 or G4. Such questions are related to results of Nagle, Rödl and others on counting hypergraphs with
forbidden induced substructures.

2.6 Counting induced substructures (B. Nagle)
Let F be a k-graph on f vertices, and let H be k-graph on n vertices. In this talk, we consider the algorithmic
problem of computing the number #(F,H) of (labeled, or unlabeled) induced copies of F in H . (The
greedy algorithm can do this in time O(nf ).) In 1986, Nešetřil and Poljak gave an algorithm for graphs for
computing #(F,H) in time O(ne), where the exponent e = ωbf/3c + r for remainder r = f (mod 3).
In 2005, Yuster studied the problem of computing #(F,H) for hypergraphs with k ≥ 3, and conjectured
that this quantity may be computed in time o(nf ). In this talk, we present such an algorithm with running
time O(nf/ log n). We formalize the problem that this running time should be reducible to O(nf−ε), for an
absolute constant ε > 0.

We also discuss a few approximation algorithms for estimating #(F,H). In 1992, Duke, Lefmann and
Rödl showed that #(F,H)/nf can be determined asympototically in time O(n2). In 2005, Haxell, Nagle
and Rödl showed that #(F,H)/nf , for 3-graphs, can be determined asymptotically in time O(n6). Very
recently, these results were extended to linear k-uniform hypergraphs by Nagle, Schacht and their graduate
students.

3 Scientific Progress Made
All participants of the meeting worked together on three group projects. A question about what structure of
a graph is forced when one knows an upper bound on the number of copies of a fixed tree was proposed by
Schacht. The question of finding better bounds on f(n), the maximum number of edges in a linear triple
system on n vertices that contains no 2-regular subsystem, was proposed by Mubayi (see 2.5). The problem
of estimating the extremal function exind(n, G1, G4) (see 2.5) was also proposed by Mubayi. Here we
describe in detail only the first of these projects, as progress on the others is still ongoing.

3.1 Trees force almost regular graphs
Sidorenko’s conjecture in extremal graph theory due to Erdős and Simonovits [7] and Sidorenko [5, 6] asserts
the following for every bipartite graph F and every p > 0. If an n-vertex graph G contains at least p

(
n
2

)
edges,

then the number of labeled copies of F in G is at least (1− o(1))peF nvF , where o(1) tends to 0 as n →∞.
This conjecture is known to be true for several classes of graphs including forests, even cycles, and complete
bipartite graphs [6], Boolean cubes [4] and bipartite graphs F which contain a vertex that is connected to
every vertex in the other vertex class [3]. A related and somewhat stronger conjecture was stated by Skokan
and Thoma [8]. Those authors asked if every bipartite graph F which contains at least one cycle forces a
graph G to be quasi-random if the number of labeled copies of F in an n-vertex graph G with at least p

(
n
2

)
edges is at most (1 + o(1))peF nvF . Here a graph G is quasi-random if it satisfies the properties considered
in the Chung-Graham-Wilson theorem [2]. Since Sidorenko’s conjecture is known to be true for trees and
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the Chung-Graham-Wilson theorem asserts a matching lower bound for the number of any graph F in a
quasi-random graph G, a resolution of the forcing conjecture would yield a proof of Sidorenko’s conjecture.

We studied a similar question when F is a tree. In view of the forcing conjecture for bipartite graphs F
which contain a cycle, one may ask which structure or how much control over a graph G we can force by an
upper bound on the number of labeled copies of a given tree T . We say a graph G = (V,E) (more precisely
a sequence of graphs (Gn)n∈N) is nearly p-regular for some p > 0, if∑

v∈V

∣∣ deg(v)− p|V |
∣∣ = o(|V |2).

It is easy to see for every fixed ` ∈ N that if an n-vertex graph G is nearly p-regular, then for any tree F
with ` edges the number NF (G)of labeled copies of F in G satisfies

NF (G) = (1± o(1))p`n`+1 .

At the workshop we obtained the opposite implication, stating that trees force the property of being nearly
regular, i.e., every graph G with NF (G) being close to the minimal value must be nearly regular. As a
consequence we obtain the following characterization of nearly regular graphs.
Theorem. Let p > 0 and let (Gn = (Vn, En))n∈N be a sequence of graphs with |En| ≥ p

(|Vn|
2

)
. The

sequence (Gn)n∈N is nearly p-regular if and only if there exists some tree F with ` ≥ 2 edges such that
NF (Gn) ≤ (1 + o(1))p`|Vn|`+1.

This theorem follows from a more precise lower bound estimate on NF (G) in terms of the degrees of G.
For that we verify a counting formula for a graph G = (V,E) of the following form

N̂F (G) ≥ 2|E|

(∏
v∈V

deg(v)
deg(v)
2|E|

)`−1

, (1)

where N̂F (G) denotes the number of homomorphisms from F to G. Note that for dense graphs G we have

NF (G) ≤ N̂F (G) ≤ NF (G) + o(nvF ) .

It is easy to show that (1) is minimized when G is a regular graph and in this case we obtain NF (G) ≥
(1− o(1))p`|V |`+1. Moreover, one can show that a “matching” upper bound on NF (G) forces the graph G
to be nearly regular.

For the proof of (1) we extend the ideas of Alon, Hoory and Linial [1] who obtained the same formula for
paths.

4 Outcomes of the Meeting
We expect several papers to result from the group projects outlined in the previous section. In addition, all
the participants derived great benefit from being together in Banff and able to focus on fundamental problems
related to spearse pseudo-random objects. We believe the meeting was of particular benefit to the young
researchers in the group, and we close with some representative comments from one of the more junior
participants.

“My research experience at the BIRS workshop 10frg131, Sparse pseudorandom objects, was extremely
positive. This workshop brought together 8 researchers with sharp interests in pseudorandom graph and
hypergraph theory for 6 full days of rich discussion and problem-solving. The workshop used an excellent
mix of senior and junior researchers. As I consider myself still a junior researcher, I benefited tremendously
from time spent with such talented and knowledgable experts, and also appreciated tremendously making
collaborative ties with other young researchers whom I didn’t previously know. I believe the insights I gained
from my mentors, and the relationships I grew with my peers, will assist me invaluably in my career.”
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