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1 A brief historical introduction

The origins of the theory of algebraic groups can be traceH tzethe work of the great French mathematician
E. Picard in the mid-19th century. Picard assigned a “Gajaisip” to an ordinary differential equation of
the form

d" 'y

e +p1(2) dan—1 + .. +pa(2)f(2) =0,
wherepy, .. ., p, are polynomials. This group naturally acts on thdimensional complex vector spateof
holomorphic (in the entire complex plane) solutions to #gsiation and is, in modern language, an algebraic

subgroup ofGL(V).

This construction was developed into a theory (now knowreuttte name of “differential Galois theory”)
by J. F. Ritt and E. R. Kolchin in the 1930s and 40s. Their wodswa precursor to the modern theory
of algebraic groups, founded by A. Borel, C. Chevalley and\TSpringer, starting in the 1950s. From
the modern point of view algebraic groups are algebraicetias, with group operations given by algebraic
morphisms. Linear algebraic groups can be embeddé&d.infor somen, but such an embedding is no longer
a part of their intrinsic structure. Borel, Chevalley andiSger used algebraic geometry to establish basic
structural results in the theory of algebraic groups, sicboamjugacy of maximal tori and Borel subgroups,
and the classification of simple linear algebraic groups awealgebraically closed field. (The latter used the
classification of simple Lie algebras, developed earlietigy Cartan, Killing and Weyl.) A more detailed
historical account of these developments can be found ih [19

The main focus of the workshop was on linear algebraic growps fields that are not necessarily alge-
braically closed. In this context the theory of linear algabgroups turned out to be closely related to several
areas in algebra which previously had an independent existeAmong these areas are Galois theory, the
theory of central simple algebras (including Brauer groapd Brauer-Severi varieties), the algebraic theory
of quadratic forms, and non-associative algebra. Infosmsdeaking, these connections may be viewed as
another manifestation of the idea, championed by F. Kleithatturn of the 20th century. Klein believed
many mathematical objects (in particular, in geometry)tmst understood and described in terms of their
symmetry groups. A crucial role in implementing this idedtie algebraic context (where the objects to be
studied are central simple algebras, quadratic formspamialgebras, etc.) is played by the theory of Galois
cohomology pioneered by J.-P. Serre and J. Tate in the 1968D80s.



This approach has been particularly successful within thebaaic theory of quadratic forms. In the
context of number theory the study of quadratic forms goek ha Gauss (and probably earlier). The
algebraic theory of quadratic forms began with a seminagpapWitt in 1937, in which what are now called
"Witt's Theorem” and the "Witt ring” first appeared. But it wanot until a remarkable series of papers by
Pfister in 1965 - 1967 that the theory was transformed intgrifsgant field in its own right. In these papers,
Pfister generalized the well-known two, four, and eight sgudentities of Euler and Cayley, determined the
minimum number of squares representing -1 in an arbitratg,fend developed the finer ring structure of
the Witt ring of quadratic forms. This phase of the subjeetédl documented in the books of Lam [12] and
Scharlau [17]. The connection with the theory of algebra@mugs was introduced into he subject by T. A.
Springer who, in 1959, recasted some of the classical mwtFriof quadratic forms in terms of the Galois
cohomology of the orthogonal group.

2 Recent Developments and Open Problems

In the past 25 years there has been rapid progress in theythiequadratic forms (and more generally, in the
theory of algebraic groups) due to the introduction of pdulatew methods from algebraic geometry and
algebraic topology. This new phase began in 1981 with thieufiies of sophisticated techniques from algebraic
geometry and K-theory by A. Merkurjev and A. Suslin who ebshied a deep relationship between Milnor’s
K-groups and Brauer groups. The Merkurjev-Suslin theoream & starting point of the theory of motivic
cohomology constructed by V. Voevodsky. Voevodsky devetba homotopy theory in algebraic geometry
similar to that in algebraic topology. He defined a (stable}imic homotopy category and used it to define
new cohomology theories such as motivic cohomology, K4thend algebraic cobordism. Voevodsky’s use
of these techniques resulted in the solution of the Milnamjecture (for which he was awarded a Fields
Medal in 2002) and more recently of the Bloch-Kato conjee{iardetailed proof of the latter is yet to appear
in print). For a discussion of the history of the Milnor coetigre and some applications, see [15].

These developments have, in turn, led to a virtual revatutinthe theory of quadratic forms. Using
motivic methods and Steenrod operations (defined by Vo&yadsmotivic cohomology and independently
by P. Brosnan on Chow groups), Merkurjev, Karpenko, IzhinglRost and Vishik, and others have made
dramatic progress on a number of long-standing open prabienhe field. In particular, the possible values
of theu-invariant of a field have been shown to include all positiverenumbers (by A. Merkurjev, disproving
a conjecture of Kaplansky9,by O. Izhboldin, and every number of the fof + 1 by A. Vishik. (Vishik’s
result is new; it was first announced at the workshop.) Anolihheak-through was achieved by Karpenko,
who described the possible dimensions of anisotropic fomtise nth power of the fundamental ide&t in
the Witt ring, extending the classical theorem of Arason Bfister.

An unrelated important development in the theory of cergiiaiple algebras is the recent proof, by A.
J. de Jong, of the long standing period-index conjecture;[8f This conjecture asserts that the index of
a central simple algebra defined over the function field of mmlex surface coincides with its exponent.
Previously this was only known in the case where the indexaaf the form2™ - 3™ (this earlier result is
due to M. Artin and J. Tate). In a subsequent paper de Jong.&tdrd found a new striking solution of the
period-index problem by constructing rational points omifees of Grassmannians. Yet another geometric
approach for index-period problem was developed by M. ligdblLieblich’s approach is based on construct-
ing compactified moduli stacks of Azumaya algebras and stgdieir properties. These methods and their
refinements are likely to play an important role in futuresgsh on currently open problems in the theory
of algebraic groups; in particular, on Serre’s Conjectlirdlbert’s conjecture on cyclicity of central simple
algebras of prime degree and Bogomolov’s conjecture on Hiei§group of a maximal pro-normal closure.

Many fundamental questions in algebra and number theoryedated to the problem of classifying G-
torsors and in particular of computing the Galois cohomylset H' (k, G) of an algebraic group defined
over an arbitrary fieldc. In general the Galois cohomology sét (k, G) does not have a group structure.
For this reason it is often convenient to have a well-defingattorial map from this set to an abelian group.
Such maps, called cohomological invariants have beendat@d and studied by J-P. Serre, M. Rost and A.
Merkurjev. Among them, the Rost invariant plays a partidylanportant role. This invariant has been used
by researchers in the field for over a decade but the details afefinition and basic properties have not
appeared in print until the recent publication of the bod)] ly S. Garibaldi, A. Merkurjev and J-P. Serre.



This book is expected to give further impetus to this lineesfaarch.
The presentations at the workshop were loosely groupedtetfllowing general categories:

e Galois theory

K-theory

Algebraic stacks

Homogeneous spaces

Arithmetic groups

Brauer groups

Quadratic forms in characterist€ 2

e Quadratic forms in characteristic

We will now briefly report on the contents of these preseoteti

3 Galoistheory

Lecture by Florian Pop. Let K be an arbitrary field containing an algebraically closedfisich Let p
be a prime numbep # char F'. SetGk , to be a Sylowp subgroup of the absolute Galois groupfef
Bogomolov’s freeness conjecture asserts that the comamgadup (G ,, Gk p) Of Gk, iS a free prop
group; or equivalently, it has cohomological dimension.one

This conjecture was motivated by considerations aboutdhemology ringH* (K') of K, with coeffi-
cients in, sayj,, and in particular by the Merkurjev-Suslin theorem. Thealevice before Pop’s work relied
on generalizations of Tsen’s theorem which asserts thatisfalgebraically closed and the transcendence
degreeK/k is 1 then the cohomological dimension of the absolute Galoisigtie 1. Also if K satisfies
Bogomolov’s conjecture, then so do its fields of formal poseniesik ((t)) in ¢t over K.

This type of question was also investigated by Chernousile-Reichstein [9], who ask whether the
maximal abelian extensioK“ of a field as above has cohomological dimension one; moreretaly,
whether the maximal abelian extension of the rational fialdwo variablesC(t,u)* over the complex
numbers has cohomological dimension one. If so, then thigldvbave applications to tackling Serre’s
Conjecture .

One could say that the power seri€$(t)) are “local” objects ovel, thus one should rather speak here
about an “obvious evidence” for the above conjectures. Towkwf Pop aims at giving less obvious evidence
for the above two conjectures. In fact, the examples presemy Pop given evidence for an even stronger
conjecture, namely that in the cases of interest (i.e.,éf@msiders function field& |k over some base fields
k which contain all the roots of unity ** has afree profinite absolute Galois group

The evidence given by Pop is the following:

1) Suppose that is an algebraic extension of a local field such thabntains all roots of unity. 1|k
is a function field in one variable ovét then the absolute Galois group & is profinite free.

2) A more global version of (1): Let be a prime number. Sét = F, (¢, u), whereF, is an algebraic
closure of a field of ordep andt, v are algebraically independent variables olgr Let ko be a rational
function field of one variable ovdf, in K" and letk, be a maximal algebraic extension/gfin K., which
is unramified overk, outside the infinite place.K.,, is a separable closure &f.) Finally setk“® to be a
maximal abelian extension df. Then the compositur **k, has a free profinite Galois group.

This work is a promising step towards settling Bogomologsjecture for fields liké, (¢, u), C(t, u), . . .
The use of the field,, in Pop’s construction is rather interesting. The advantfgesing the field extension



ko|ko is that it has a well understood arithmetic description. (Rise that, = F,(X). Then the roots of
Artin-Schreier equationg? — y = f(X) (wherep does not divideleg (X)) are inko. Moreover by Ab-
hyankar’s conjecture (see [11] or [16]) it is known that alit® groups which are generated isubgroups
(finite quasip-groups) are quotients (ﬂial(i{o/ko). More precise information about the solution of Galois
embedding problems insidg /&y may be obtained from [16]. Hendg is a rather large extension k.

Lecture by John Swallow. Absolute Galois groups of fields are mysterious. Therefore would like to
identify quotients of Galois groups which are non-triveahd yet possible to completely classify.

A pro-p group A is called aT-group if there exists some maximal closed abelian subgRwb A (This
means in particular thafA : B] = p) such that the exponent & dividesp.

LetT be a prop group and letA be a closed subgroup of indgxin I'. Set alsoP(A) to be a Frattini
subgroup ofA. (This meansb(A) = AP[A, A], the closed subgroup @k generated byth-powers and
commutators.) Then we defif®I'/A) := I'/®(A) to be theT-group associated with the pdir A. If T
is an absolute group of a fielll and A fixes a cyclic extensio#?/F, then we say thal’ := T'(T'/A) =
T(E/F) is theT-group associated with the extensidif F. (In [BeLMS], all such groups are classified.)
In fact, one does not need to require that the absolute Gatoigp of F' is a prop group; we restrict our
attention to this case to simplify the exposition.

EachT(E/F) as above is &-group. In order to classify all'(E/F) amongT-groups one defines
certain invariants of-groups. First recall that the central serigs of a groupT’ is defined recursively as
follows

T(l) = T, T(Z'Jrl) = [T, T(Z)],Z = 1, 2, RN

Further,Z(T) is the center of" andZ(T")[p] is the subgroup of elements &fT") of order dividingp.

Swallow defined invariants, to, . . ., t, andu of T" by
. Z(T
t1 = dimp, o' (72(7(1)%%]2) , Fp) ,
s Z(T)NT; .
t; =dimp, H* (W%’Fp) ,2<4i<p,
u =max {i:1<i<p TP C Ty}

and gave a complete description of which valuesof. ., ¢, can occur forI-groups. For an odd prime
p he also explained for which values of, ..., ¢, there exists a field extensidfi/F as above such that
T=T(E/F).

Thus if p is an odd prime, the possible quotiefit§E£/F') of the absolute groupEr are substantially
restricted. These restrictions imply further restriciam the presentation ©f- via generators and relations;
for details see [5] and [6]. In contrast,jif= 2, there is no restriction o' (E/F'), and all pro2 T-groups
occur for suitable quadratic extensiofgF'.

Swallow also describeH,[Gal(E/F')] module structure off"(I'g, F,,), whereF/F is a cyclic exten-
sion of degree, F' contains a primitivepth-root of 1, andI'y C I' are absolute Galois groups Bfand I
respectively. For details see [13]

In recent joint work with F. Chemotti and J. Mié, Swallow described thE, [Gal(E£/F')]-module struc-
ture of H!(T'g, F2) in the case wher&al(E/F) is Cy x Co. An interesting byproduct of this description
is that although the Kleid-group has infinitely many indecomposable modules @&gronly finitely many
of these modules can occur as a summand/éfl'z, F»). This fact points out the possibility of obtain-
ing the full structure of Galois modules for other Galoisugs, even in cases where the classification of
indecomposable modules is a hopeless task.

Lecture by Eva Bayer-Fluckiger. Let F' be a field of characteristic different from two atlbe a finite
group. AG-form is a pair(M, ¢) with M an F[G] module of finite-dimension andy a quadratic form
such thatp(gz, gy) = p(z,y) forall z,y € M and for allg € G. The problem is to determine when are two
G-formsy := (M, ¢) andvy := (M, 1)), i.e., areG-isomorphic. This problem is a natural generalization of
the classical problem of determining whéi, ) admits a self-dual basis, i.e., whél/, ¢) = (F[G], q).
Hereq(o,7) = 4, for eacho, T € G andé,, = 1 or 0 depending upon whether = 7 or o # 7. The
problem of the existence of a self-dual basis is especialbrésting when the modulg[G] is a Galois field
extensionL of F', G = Gal(L/F) and formq is a trace formyy, : L x L — F,(z,y) — Try,p(zy). In



[1] it was proved that any Galois algebra has a self-duakbdsie situation is more complicated whe |
is even; the paper [4] treated the cases wher@i8glow subgroug, of the Galois groufd- is elementary
abelian (i.e.(Go ~ Cy x ... x Cs) or a quaternion group of ord8rn(Gs ~ Qs).

Let W (F') be the Witt ring of non-degenerate quadratic forms dvemdI(F) its fundamental ideal of
even dimensional forms ard (F') its nth power. Suppose thatl; 7', the cohomologicat-dimension ofF,
is finite and equal tal. This means that the absolute Galois gréupof F' has cohomological dimension
d. Let L and L’ be two G-Galois algebras and let and be their corresponding trace forms. Then in
[7] it was proved thap ® ¢ =g p ® ¢ for anyp € I4(F). Now let L be any Galois algebra ovet
with Galois groupG. LetT be an absolute group d@. ThenL can be viewed as an elementif (T, G),
where the action of' on G is trivial. In particular there is a corresponditecocyclep : T' — G, which
is just a continuous homomorphism associated toConsider any homomorphism € H'(G,F,). Set
xrr = xop € HY(T',Fy). Keeping our assumption thétand L’ are two Galois extensions df having
Galois groupG, assume now thai € I9~!(F). Then Bayer-Fluckiger showed thato ¢ =g p ® ¥ if
and only ife;_1(p) Uz = eq_1(p) Uz forallz € H(G,Z/2Z). Heree; are the isomorphisms given
by the Milnor conjecturd®(F) — H'(I'r,Z/2Z). An analogous result holds for (finite) ordered systems
of quadratic forms (or hermitian formg) := (¢1, ..., ¢m), With the obvious notion of isomorphism. ¥
andX’ are two such ordered systems of quadratic forms (respéctieemitian forms) of sizen such that
they become isomorphic over the separable closurE tdfenpX = pX' for all p € I4(F) (respectively,
p eI (F)).

At the end of the lecture Bayer-Fluckiger showed that sinméesults hold if the field? is replaced by
(D, o), whereD is an F-division algebra with involutior. One can also look at ordered systems of such
hermitian forms; for details see [2, 3]

4 K-theory

Lecture by Stefan Gille. Let X be noetherian scheme aiid® the set of points inX of codimension. If
z € X let F(x) be the residue field. We have a Gersten complex

(*) 0— K;(X) — @X(O)K;(F(x)) — @X(I)K;L(F(l')) —

in coherent-theory. The sequende) is exact (Gersten Conjecture) f&r = SpecR if R is a regular semi-
local ring by work of Quillen and Panin. One wants a similaulefor Hermitian Witt groups. LeM.(X) be

the category of cohere®x-modules. We have a filtration by Serre subcategokiegX) = M° > M! >

- with M® := {F € M.(X) | codim suppF > i}. If dim X is finite, we get a spectral sequengg? :=
Kp_q(MP/MPT1) = cohomologicalK -theory of X and K,,_,(MP/MPT1) = &y K_pp—o(F(x)) by
Gabriel's thesis and devissage. Afis an Azumaya algebra ove¥, we can look atM.(A) the category
of coherent (left)A-modules and filter it byM?%, := M_.(A) N MP. We get another spectral sequence and
can ask if the Gersten conjecture is true for it. Replacihdpy A and F'(z) by A ® F(z) in (%), we get

a complex introduced by Colliot Eiene and Ojanguran and showed to be exact by them and Padin-Sus
Gille studies this problem ifi has an involution which consists of an automorphisif X of order two and
anOx-linear mapr : A — o0, A satisfyingo.(7) o 7 = 14 and7(ab) = 7(b)7(a). The mapr is of the first
kind of o = 1 and the second kind otherwise. Assume tha of the first kind. Gille shows that {f4, 7) is

an Azumaya algebra over a regular schexnef finite dimension withr of the first kind then there exist two
complexes, th@ermitianandskew hermitian Gersten-Witbmplexes

(x) 0— Wi(A,T) — @X(mWi(A@F(I)vT@F(SC)) e

and this complex is exact X is the spectrum of a semi-local ring of a smooth variety. Sursult could not
be true ifr is of the second kind as, in general, it would not induce aotpimisms of the residue fields. Gille
then constructed these Gersten-Witt groups. To show exs&tione follows Quillen’s proof but modifying
Quillen’s last argument on the additivity of functors to I8 result that given a Gorenstein ridgyof finite
Krull dimension, an Asumaya algebrhover R with an involutionr of the first kind, and € R an element
satisfyingr : R — R/R/Rt has a flat splitting then the transfer : W¢(A/tA,7/tT) — WitL(A, 1) is
zero.



Lecture by Alexander Nenashev. Balmer-Witt theory does not have Chern classes as it is riehted
and the Projective Bundle Theorem fails. Nenashev showedtd@onstruct a twisted Thom isomorphism
and deformation to the normal cone in the theory and usedshtov the existence of a pushforwafd :
WY, f*L ® wy,x) — W"*°(X, L) for any projective morphisnf : ¥ — X of pure codimensior
where L is a line bundle onX andwy, x is the relative dualizing sheaf. The difficult point is to shid
j:Z—Yandi:Y — X are closed imbeddings then the pushforwdig$. = j.i. which uses the theory
of “double” deformation spaces.

Lecture by Marco Schlichting. Balmer-Witt groups of a regular schemehave long exact Mayer-Vietoris
sequences. In general, this is no longer true if the schemiagsilar. Schlichting lectured on a way to deal
with this by defining new Witt groups callexiabilized Witt groupgeneralizing certaiL-groups defined by
Ranichi and Witt rings with involution defined by Karoubi. tAbugh this theory is not known to hold for
triangulated categories with involution, it does hold fategories of rings with involution, exact categories
with involution, dg categories, and exact categories wsthmorphisms weak equivalences. In particular,
in these cases, one can generalize the notion of suspersidnsones. Thes stabilized Witt groups have
periodicity 4 and satisfy Mayer-Vietoris and homotopy invariance. Theincide with Witt-Balmer Witt
rings if K,, X = 0 for all negativen, e.qg., if X is regular. The case when the characteristic of the unaheylyi
field is zero was also discussed and the relationship wittvighg, reflecting work done jointly with G.
Cortinas, C. Haesemeyer, and C. Weibel.

5 Algebraic stacks

Lecture by Patrick Brosnan. Let F : fields/F — sets be a functor. Merkurjev, generalizing the idea of
Buhler-Reichstein defined the essential dimension of agebe eds := min{trdeg. K | L/K/F with a €
im(F(K) — F(L))} and the essential dimension #fto be edF := {eda | « € F(L), L/F}. If Gis

a group let ed? := edH'(—,G). Generalizing the definition of essential dimension to udel stacks,
Brosnan discussed his joint work with Z. Reichstein. An Agtack can be viewed as a functor from rings to
categories (usually groupoids) satisfying various proeer An interesting example gfis the moduli stack

of smooth curves of genuys there are many other interesting examples, related te.ggrious other families
algebro-geometric objects, such as curves, hypersurfatetian varieties, etc., possibly with additional
structures, such as marked pointsy lis a stack then eglis defined as the essential dimension of the functor
L — {isomorphism classes of objectsyn }. Assuming that an Artin stack has a filtration of closed stack
X=Xn D Xn-12 - D xo = 0with x; \ x;i—1 = [Vi/Gi], the stack associated to thg-torsors of scheme
Y; whereG; is a linear algebraic group, then they showyeid finite. Brosnan also discussed his theorem that
the essential dimension of a complex abelian varigty.e., of the Galois cohomology functdéf!(—, A)) is
2dim(A).

Lecture by Angelo Vistoli. Vistoli lectured on the use of stacks to investigate thethef hyperelliptic
curves. (Cf. the summary of Brosnan'’s lecture for defingigprf X is a scheme and’ a group acting on
X, let[X/G] be the stack associated @&torsors ofX. For example, the stack of moduli spaces of genus
g is [X/PGLy]. Define the homology of a stack — schemes/F by H*(F,Z) := H}(X,Z). Then
Pic([X/G]) = Picg(X), wherePics (X)) is theG-equivariant Picard group. The stack of elliptic curves is
[U/G,,]) whereU := {(a,b) € A? | —4a® — 27b? # 0} for elliptic curves (given in Weierstrass form):
y? = 2% 4+ ax + b. This difficult theorem shows that the stack of elliptic ces\is a quotient stack. The
problem is to generalize this to finkl, so that the stack of curves of genyiss [X,/GLy]. Forg = 2, it

an be shown thak’, is a subspace oA”. This generalizes to the stack of hyperelliptic curves ofuge, a
closed substack of the stack of curves of gepiisy > 2. Together with A. Arsie, this stack was identified as
[X/G] with X = {f | f ahomogeneous form of degrge+ 2 with distinct zero$ an open subset gf29+3
andG = GL, if gis even andy = G,, x PGLs if g is odd (with specified action). Moreover the Picard
group of this stack iZ/(2g + 1)) if g is even andZ/(4(2g + 1))) if g is odd. The case of trigonal curves
was also discussed.



6 Homogeneous spaces

Lecture by Prakash Belkale. Let G be a simply connected simple algebraic group @@ maximal
parabolic subgroup. Belkale lectured on his joint studyw@t Kumar on the ring structure &f*(G/P, C)

in terms of structure constants for multiplication of thé8lert basis. By introducing a new twisted product
on this basis, they are able to apply to give additional imfation to the eigenvalue problems and its rela-
tion to the Horn Conjecture and the Klyachko, Knutson-Tamtlem on the sum of eigenvalues of hermitian
matrices.

Lecture by Kirill Zainoulline. Let G be a linear algebraic group ovérand X a projective homogeneous
G-variety. One wishes to decompose the Chow motik€X ) of X into a sum of motives of varietieg
having “trivial splitting patterns”. This has been done $mme cases, e.g., @ is split, if X has a rational
point (by V. Chernousov, S. Gille and A. Merkurjev), orifis isotropic (by P. Brosnan). So assume tfiat
is anisotropic. IfX is an Pfister form then Rost showed thlett = @ R () with R(:) indecomposableR z =
Z®Z(2" ! —1). But R(i) is not the motive of a variety. N. Karpenko showed that theiveatf the Severi-
Brauer variety of a division algebra is indecomposable Ahik decomposed the motive of an anisotropic
quadric. Zainoulline discussed other cases. A projectivecth variety over is calledgenerically splitif
M(Xp(x)) = ®.Z(x) and L/ F is called asplitting fieldfor X if X, is generically split. Fix a prime.
Let A = CH(XL)/p whereL is a splitting field ofX and A,..; := im(CH(X)/p — CH(X)/p) (cf. the
generically discrete invariant of Vishik). {fis prime and there exists@ac A" satisfyingA® = A?_, for all

rat
s<r, A" = (p, Ar,,) and there exists finite subsBwf A, ., such that3 x {p'}—o ,—1 is a basis ford then
M(X) ® Z/p = ®.R(x) with R indecomposable if and only i® has no0-cycles of degreé. If X andY
both satisfy the conditions of this result for the sameX splits overF'(Y'), andY” splits overF'(X) then
Rx = Ry. This applies to the case 6f split with G = ¢G, € € HY(T'r, G) (an inner form) withl" = the
absolute Galois group df andX = ¢(G/P), P aparabolic subgroup, This applies whEn= SB(M(D)),
whereD is anF-division algebra of degreg ann-fold Pfister form withp = 2, ¢(F4/P;) with p = 2 or 3,

andg(Eg/Pg) Wlthp = 5.

7 Arithmetic groups

Lecture by Philippe Gille. LetT'r be the absolute Galois group of a number figldIf v is a place ofF’,

we will denote the completion of atv by F, and the algebraic closure &, by F,,. We will also denote

a finite set of primes by, the ring of integers inF' by A, the ring of S-integers byAg, and the ring of
integerst inF, by A,. The Borel-Serre Theorem states that for a linear algelgraicp G over I, the map
W4(F,G) := ker(H'(Tr,G) — [l,45 H'(Tr,,G)) is proper, i.e., has finite fibers. Gille discussed his
joint work with L. Moret-Balilly on the integral version of ihtheorem.

Let X be variety overF' having an action of a linear algebraic groGpon it andZ, C X a flat closed
Ag-subscheme. LeW!(xo) := G(F)\{z € X(F) | z € G(F,)zo forallv ¢ S}. This is a finite
set. Suppose tha¥/Ag is a flat affine group scheme add/As is a flat scheme with an algebraic action
G xas X — X givenbyg -z — p(g) - . ThenG(Ags)\loc(Zp) is finite, whereloc(Zy) := {Z C X |
7 aflat closedA g-subscheme with(g,) : Z x4, A,——Z x4, A, for someg, € G(A,) forallv ¢ S}.

An example of this is7 = GL,,,/Z acting onG by conjugation. Suppose this is the case. foix G. Then
there are only finitely many € GL,Z satisfyingg = gpgogp—1 for g, € GL,,Z, for all p. The theorem
follows from a more general one, viz.,i/Ag is an affine group scheme (but not necessarily flat) then the
cohomology seH}ppg(AS, @) is finite wherefppf is the faithfully flat of finite presentation topology. To
prove this one makes various reductions. First one redoce8at group scheme ovels. This can be done
because over a number field as the normalizatia@ of still a group scheme. One shows that the result holds
for a flat affine group scheme. Reducing to the case®hatalso connected, the result for sughs proven.

Lectureby Uzi Vishne. Vishne discussed his joint work with M. Katz and M. Schaps$ranes in congruence
subgroupd’(I) of finite index in an arithmetic latticE. Let K be a totally real number field lying iR via
one of the real embeddings $6 ® R = R x R4, Let Ok be the ring of integers itk and D/K a
quaternion algebra witth ® R = Ms(R) but D ®, R a division algebra at théd — 1) non-inclusion
real embeddings. Lep be an order inD. The latticel is taken to beQ!, the elements of norm one. Let



X :=T'\\H whereH is the upper half plane antl; := I'(I)\'H wherel is anideal inOx. ThenX; — X is

a cover of Riemannian manifolds. LetX ) be the genus oK. The length of the shortest non-trivial closed
loop in71(X) is called thegirth of X. Vishne and his collaborators showed that for any metricrRignian
surfaceY of genusg, one hag(girth(Y))?/aredY’) < (logg)?/ng and forZ = X, or X(I) above that
(girth(2))?/aredZ) > 4(logg(Z))?/9mg(Z). So (girth(X;) > (2 -2/1 - 3)(log(g9(X;) — ¢) for some
constant = ¢(T"). All the integers in the coefficient are constants that caexpéained except for the second
2. For example, the firs is the trace ofi. More generally, i1 # z € T'(I) := ker(Q* — (Q/IQ)*
then|tr x| > (N(I1)2/2¢N(20k +~I)) — 2 whereQ C (1/7)Qo with Qo the standard ordeP i, j] in

@ and~y minimal. Computation shows that there exists a constang satisfying[I" : T'(I)] < Ap.oN(I).
This is used to show girft;) > 4/3(log(g(Xr)) — log 23¢=5vol(X)Ap /7. For a Hurwitz surface, i.e.,
a compact Riemann surfagéthe order of whose automorphism group achieves the maxinossilge size
84(g — 1), this gives girthi.X') > (4/3) log(X).

8 Brauer Groups

Lecture by Daniel Krashen. Krashen discussed joint work with M. Lieblich. Létbe a perfect fieldD a
central F-division algebra, and’ a curve over' of genusl. Krashen discussed the problem of determining
the index of D (). They show that the index inB g ¢y := min{[E : F(C)] | Dg splits} is in fact equal
tomin{[L : F] | Dyc) splits}. This solves the problem i is a local field, viz., indD ¢y = min{[L; F] |

ind D/ged(ind D, [L : F]) divides indC} where ind(C') := min{[E : F] | C(E) # 0}. Krashen then
discussed the theory of twisted sheaves and its relationetindex. LetX be a nice scheme ovét, i.e.,
integral, noetherian, ... . Let € H*(X, G,,) (the cohomological Brauer group). Antwisted sheabn X

is a collection ofOy,-modulesM; where{U,} is an gtale) open cover ok with (glueing) isomorphisms
vij + Milu,nu; — Mjlu,nu, satisfyingp;;a = o;rpi; with & a (Cech) cocycle in the class of (This
can be shown to be independent of choices.) There existstaisted locally free sheaf of rankon X if
and only if there exists an Azumaya algebtaon X of degreer such that the class ot is «, i.e., a lies

in the Brauer group ofX. Going to the generic point, this implies that there existswetwisted coherent
sheaf of rank- on X if and only if ind . ) | 7. Next Krashen discussed how this relates to the problem of
determining when an elemeht Pic C comes fromL € PicC(F'), i.e.,l = [L]; equivalently! arises from

a line bundle on C, whereF is the algebraic closure df. Choosing isomorphisms, ., : “£ — 7L for

o, 7 in the absolute Galois group @f may not be compatible glueing data but does giecacyclea, - -

in G,, hence leads to anc-twisted line bundle defined ovdr hence in the Brauer group &f. If C is

an elliptic curve and” anac-locally free sheaf of rank then inda () = n implies there existd// F' of
degreen such thatve,, splits.

9 Quadratic formsin characteristic # 2

Lecture by Alexandr Vishik. The u-invariant of a fieldF' is defined to be the maximal dimension of
anisotropic quadratic forms defined ovEr For fields of characteristic different from two, it knownath
u cannot be3, 5, or 7. Merkurjev showed that any even integer could be dh@avariant of a field and
Izhboldin showed the value ¢f was achievable. Vishik lectured on his construction of Befévingu-
invariant2™ + 1 for anyn > 3. Let G(Q, ) be the Grassmannian éfdimensional projective planes in a
smoothD-dimensional quadri€) over F for 0 < i < d := [D/2]. Thegeneric discrete invarianFD1(Q)

is defined to be the image 6fh* (G(Q, i) — Ch*(G(Q,i)/F) whereCh*(X) is the Chow group oX mod

2 and F' is the algebraic closure df. If FI(Q,0,i) is the flag variety ofY, there exists a correspondence
[:Q — G(Q,i). Letz;(i—d) = fu(lp—i—;) for D—d—i < j < D—iwherely,ly,...,lqin CH;(Q/F),

< i < d, are the classes of projective subspaceg gfof dimension: (choose one ifl is even). Theth
elementary discrete invariatE DI (Q, ) of Q is set{j | z;(i — j) is defined ove#’ mod2. To each() one
can draw al x d square with the lattice poirit:, y) colored ifz, (y — d) is defined over. Vishik proved the

if the characteristic of" is zero andD = 2" — 1 with » > 3 and the square faf) has only the(d, d) point
possibly colored then for all quadri€g’ of dimension> D the invariantE DI ( ’F(Q)) will have the same

property. In particularQ’F(Q) is anisotropic. Using this result one can construct a fieldrtpu-invariant



2" + 1 for anyr > 3 in the usual way. The proof of the theorem utilizes a more gdnmesult that Vishik
proved, viz., if the characteristic @ is zero andy € Ch"™ (Y/k) with Y a smooth quasi-projective variety
over I’ andQ as above then for any. < [(1+ D)/2], the elemeny is defined over if and only if y| 7 () is
defined. The proofs use symmetric operations in cobordigmrih Because of interest in the result, Vishik
gave a second lecture with more details of the proofs.

10 Quadratic formsin characteristic 2

Lecture by Ricardo Baeza. Let F be a field of characteristic two. L&V (F) denote the Witt ring of non-
singular symmetric bilinear forms addF’) the fundamental ideal of even dimensional forms. I'§tF') be
thenth power of[(F'). (Cf. the summary of Hoffman’s lecture for definitions andatimn.) LetW,(F’) be
the Witt group of (even dimensional) non-singular quadritims overF; itis aW (F)-module. Ifa,b € F

let [a, b] be the binary quadratic formaz? + 2y + by?. Every non-singular quadratic form is an orthogonal
sum of such binary forms. The submodife'! (F) := I"(F)W,(F) is generated byn + 1)-fold quadratic
Pfister formsp ® [1, a] with ¢ a bilinearn-fold Pfister form. J. Arason and R. EIman found a presemtatio
for I"(K') when the fieldK” was of characteristic different from two. Baeza with J. Aragound analogous
presentations fof" (F') and1;'*!(F) for all n. ForI"(F) the generators are isometry clasggsof bilinear
n-fold Pfister formsb with generating relations given by

1. [b] = 0if b is metabolic.

2. (L,a)®c]+ [(1,b) @c] =[(1,a+b) @ c] + [(1,ab(a + b)) ® c] with c an(n — 1)-fold Pfister form
anda + b # 0.

3. [(1,ab) ® (1,¢) @d] — [(1,a) ® (1,¢) @ d] = [(1,ac) ® (1,b) @ d] — [(1,a) ® (1,b) ® d] with d an
(n — 2)-fold Pfister form.

where the second relation is only needed it= 1 and for I;'(F") the generators are isometry classes of
quadraticn-fold Pfister formd ] with generating relations given by

1 [c®[l,d1 +da]] — [c®[1,d1]] + [c ® [1, d2]] With dy, d2 € F andc a (bilinear)(n — 1)-fold Pfister
form.

2. [(1,a) @ o] + [(1,0) @ ¢] = [(1,a + b) @ ] + [(1,ab(a + b)) @ ¢] with ¢ a quadratiqn — 1)-fold
Pfister form andv + b # 0.

where the second relation is only neededfct 1 The proof uses the ideas to prove this result if the field is of
characteristic different from two together with a resulbabformsf[as, . . . , a,,]] defined to bex?* (1, a;) ®
[1,a1 - any1] if a1,...a, € F* otherwise to be zero. These gener&té! (F') with generating relations

1. [[a1,- .., ant1]] = 0if somea; = 1.
2. [[aty .., m2ai, . cajy .y ania]] = [laly . ai, o r%ag, . ang ]
3. [[a1,...,ant+1]] = 0if someay, ..., an41 € p(F).

Lecture by Detlev Hoffman. Let F' be a field of characteristic two arlslbe a non-degenerate symmetric
bilinear form overF’. The formb decomposes as an orthogonal sum of an anisotropic parteinig to
isometry, and a metabolic part and each metabolic form isna glubinary metabolic forms isometric to

1 0
ity classes of non-degenerate symmetric bilinear form thige Nig W (F'). The even dimensional forms
constitute the fundamental ide&{F') of this ring. We have the usual filtration by the powdfy F') of
I(F)andI™(F') are generated by-fold Pfister forms®!"_, (1, a;) for some non-degenerate diagonal binary
forms (1, a;). LetT (F) := I"(F)/I"t'(F). The Arason-Pfister Hauptsatz holds, i.e., the non-meiabol
forms inI"™(F') have dimension at leagt'. To eachb, we can associate the corresponding quadratic form

( a 1 ) The formb is diagonalizable if it represents a non-zero element. htiqudar, the similar-
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b, v — b(v,v). This form is totally singular, i.e., its polar form is trali Let F(b) := F(y¢p) be the
function field of the projective quadric determined py. Laghribi showed thab () is metabolic if and
only if b is a scalar multiple of a Pfister form just as in the case thafitid is of characteristic not two.
Moreover, we can construct a splitting tower by inductiveéfining F, = F' and F; = F(b;) whereb; to
be the anisotropic part 8z, _,). If h is the smallest integer such théiin b;, < 1 thenb;,_, is a scalar
multiple of ann-fold Pfister form for some: called the degree d. Let J,,(F) := {b; | degb > n} (with
the zero form having infinite degree). Then Laghribi showg(F') = I"™(F). If ¢ is a quadratic form over
F then it is an orthogonal sum of a non-degenerate (non-singpéarty,,s and a totally singular part. Ip

is a quadratic form oveF letT" (F(¢)/F) := ker(I"(F) — 1" (F (). Hoffman showed that the following
(which proves the second Laghribi result): Lebe a quadratic form ovdr. If the non-degenerate part of
is of dimension at least two than (F(¢)/F) = 0foralln > 0andify := (1, a4, . ..a;), so totally singular,
and2” = [F2(ay,...q;) : F?|thenl (F(p)/F) = 0form >nandl (F(p)/F)is generated by the forms
PR (@M, (1,b;)) +I"TH(F) with ¢ € I"~™(F) andby, ..., by, satisfyingF?(by, ... by,) = F2(ay, ... a;).
This uses the analogue of the Milnor conjecture for quagifatims in characteristic not two proven by Kato
using differential forms.

Lectureby A. Laghribi. Let F' be afield of characteristic two. We use the notation and diefits in the talks
by R. Baeza and D. Hoffmann. K/F is a field extension, letx : W(F) — W(K) andjx : W,(F) —
W, (K) be the maps induced by the inclusiBnC K. In the case of fields of characteristic not two, kernels of
these maps for various field extensions were studied by Raig|/. Wadsworth, T.-Y-. Lam, J.-P. Tignol, and
R. Fitzgerald. In characteristic two, the multiquadratise was studied by D. Hoffmann and Laghribi. het
be an irreducible monic polynomial in the polynomial ridl’] := F[t1,...,t,] (monic relative to a fixed
lexicographic ordering) anfl(p) the quotient field of'[T]/(p). M. Knebusch proved the Norm Theorem: If
b is an anisotropic symmetric bilinear form thbg,,y is metabolic if and only ib 1) = pb g} (Without a
characteristic assumption) using the theory of speciédiza and induction, where the case= 1 is handled
by the Milnor exact sequence &V (F(¢)). Aravire-Jacob used the analogue of this sequenc&idF)

if F'is perfect and another i is not perfect to prove the analogue of the Norm Theorem forsingular
guadratic forms with hyperbolic replacing metabolic. kebe a quadratic form thep = ¢,,s L s With
ns NON-singular ang;, totally singular. (The formp,, is not unique bup, is.). Call a formsemi-singular

if neither summand is trivial. We can study three cases: ¢h@ iis non-singular, totally singular, or semi-
singular. The Norm Theorem for totally singular forms wasven by Hoffmann-Laghribi. This leaves the
case of semi-singular quadratic forms. We can also write o L vo L ¢, Wherepy is hyperbolic,pg

is the trivial form of some dimension, ang,,, is the anisotropic part. Lety (¢) = (1/2) dim ¢p, the Witt
indexof ¢ andj, () := dim ¢q, thedefect indexf . Calli; () = i ((p)+ja(p) thetotal indexof . The
form ¢ is calledquasi-hyperbolidéf dim ¢ is even and,(¢) > dim ¢/2. The Norm Theorem holds for semi-
singular quadratic forms. Its proof depends on this notfaquasi-hyperbolicity replacing hyperbolicity (as it
does in the totally singular case). Laghribi-Mammone pitbresfollowing Norm Theorem: If is anisotropic
semi-singular therp;, = pyr, implies thatp is inseparable andr(,,) is quasi-hyperbolic and jf is a totally
singular quadratic form representinghen the converse is true. They also prove a Subform Theolem:
¢ is even dimensional and anisotropic gné a quadratic form such thatr(,, is quasi-hyperbolic thep

is totally singular and for all values of ¢,,s, non-zero values of ¢, and non-zero valuesof p , there
exists a non-singular fornt such thatp = ¢ L ¢, with abp a subform ofyy andacp a subform ofabep,.
The proof also uses there theorem that i t7" + d (with m > 1) andi,,(¢F(,)) = dim ¢,,,/2 then there
exists a non-singulap over F' such that)r(,,) is hyperbolic andp = ¢ L varphi;,. This also leads to the
generalization of when a quadratic form splits over its fiorcfield.
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