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1 Overview of the Field

The purpose of this workshop was to address a question aingehe computation of topological invariants
of hyperkahler quotients. Our approach is based on the successfueiideveloped similar theory for the
case ofsymplectiquotients, so we begin with a brief account of that theory.

Symplectic geometry is the mathematical framework of at@tsnechanics. A symplectic manifold is
a manifold equipped with aymplectic formi.e. a non-degenerate closed differenfidbrm, which is the
geometric data needed to translate a Hamiltonian functiothe system to the dynamics of the system.
Examples of symplectic manifolds are aydimensional surface equipped with its area form, cotahgen
bundlesi™ M, toric varieties, and flag manifolds. A symplectic manif@dahler if there is also a complex
structure compatible with the symplectic form; when theetlareeKahler structures o/, with associated
compatible complex structures interacting like the quaters, then)! is hyperkahler. Many hyperfahler
manifolds appear naturally in physics and representatieory. Examples from physics afi&'P! with
the Eguchi-Hansen metric, K3 surfaces, and moduli spacébgafs bundles over a Riemann surface [7];
examples arising in representation theory are quiver tiasieas studied by Nakajima [14].

In the theory of hyper&hler or symplectic quotients, we are primarily concernét wsituation in which
there is a symmetry of the system, as encoded by the actionahpact Lie grougs. Symplectic manifolds
with an action of a Lie grougs and a corresponding moment map, which is a suitably compatdilection
of Hamiltonian functions, are called Hamiltonig#ispaces. For a hypeikler manifoldM, we require that
there be amomentmap : M — g*,i = 1, 2, 3, for eachof the three Khler structures. Given a symplectic
HamiltonianG-space, the symplectic quotient is definedag G := 11 ~1(0)/G. The reduced space inherits
a symplectic structure from/. In the hyper&hler case, we take the hypéatter quotient\/////G to be the
quotient byG of the intersection of the zero-level sets of all three monnegps; this is again hypéeikler.

Hyperkahler quotients, and hypeitkler geometry in general, has recently attracted muchtattedue
to its relationship between many other fields of mathematithe topological invariants of hypeikler
manifolds, such as rational cohomology or integkatheory, are often quite interesting. For example, the
K-theory of quiver varieties give geometric realizationgegresentations of certain algebras associated to
quivers. There are also close connections between the albgyof hyperlahler analogues of toric varieties
and the combinatorial theory of hyperplane arrangements.

We now give an overview of our approach towards the comprtaif the topology (more specifically,
the rational cohomology ring) of hypeikler quotients. There is a “meta-principle” for computsugch
invariants of Hamiltonian quotients of various types, whige call here th&irwan method Let M be a
HamiltonianG-space of some type (symplectic or hypégnler, andV/ the appropriate Hamiltonian quotient
of M by G. Then the Kirwan method consists of the following three step



“The Kirwan method”:

1. “Meta-Theorem” (Kirwan surjectivity): For M andM¢ as above, there is a natural ring homomor-
phism
K Hg(M;Q) — H*(Me; Q)
which issurjective In particular, in order to computd *(M¢; Q), it suffices to computé? (M ; Q)
andker(k).

2. ComputeH (. (M;Q).
3. Computeker(k).

The point of this method is that one can often compute thedasbbjects H. (M ; Q) andker(x), using
equivarianttechnigues which are unavailable on the quotient. In thepdyeatic case, this “Kirwan method”
has been well-developed; in particular, Step (1) in thi:eaas proven by Kirwan [9], and various explicit
solutions of Steps (2) and (3) can be found e.g. in [8, 17, .3TAlis, our research program is to develop the
Kirwan method for hyper&hler quotients. The focus of our BIRS workshop was in thepob Step (1) for
this hyperlahler case.

2 Recent Developments and Open Problems

Kirwan’s proof of Step (1) in the case of symplectic quotieimvolves showing that the norm-squéiye]>

of the symplectic moment mgp: M — g* gives rise to an equivariantly perfect Morse-type stratfan

of M, which gives surjectivity since thelevel set ofy is the absolute minimum of the norm-squar&ve
propose to prove an analogue of Kirwan surjectivity in thitisg of finite-dimensional hypegéhler quotients
using Morse-type methods similar to Kirwan’s proof. Theme @aready specific known examples where such
a hyperlahler analogue of Kirwan surjectivity result does hold [1@]. Moreover, in the specific infinite-
dimensional case of the moduli space of Higgs bundles oveem#&hn surface, Daskalopoulos, Weitsman,
and Wilkin have developed several new Morse-theoreticriiggles using the norm-square of the moment
map to obtain new Kirwan surjectivity results in rationalrBleequivariant conomology [2, 18].

In the case of a hype#hler manifold with the action of a grou which is Hamiltonian with respect
to each of the three &hler structures (Ayperhamiltoniargroup action), there are three moment maps
M — g,i=1,2,3 (one for each of the &hler structures).

In an unpublished draft manuscript, Kirwan suggested thatoould first use the Morse theory|pf ||?+
sl = [lucll? (Whereue = ps + ips : M — g @ C) to construct a maply; (M) — H(uz'(0)), and
then use the Morse theory of the functip, || on the space:; ' (0) to construct a magi; (uz'(0)) —
HE(p7'(0) N pg ' (0)). It would then remain to show that both of these maps arectivge There are two
main technical difficulties in carrying out the second sfeptly that the gradient flow of11(/2 on zz ' (0)
might not converge (we need convergence to construct a Moesey on this space), and secondly that the
spaceu(g1 (0) is singular so we would need to provide some extra analysthéMorse theory to work. Both
of these difficulties are new to the hypatker situation; the first does not arise in the presence lgf ame
moment map (assuming we take the preimage of a regular yalod)}he second does not arise since in the
symplectic or Kahler case one usually assumes that the moment map is psoike level set is compact.

Nevertheless, despite these difficulties, Wilkin has matteéh’s second approach work in the infinite-
dimensional case of the moduli spaces of Higgs bundles.rticpkar, Wilkin (in collaboration with his Ph.D.
supervisor Georgios Daskalopoulos and Jonathan Weitsman)

1. proved the gradient flow converges, despite the non-pnege of the moment maps [18],
2. showed there exists a Morse-type theory for the norm#sdja||? on u.* (0) [2], and

3. showed how to use the singularities in the preimﬁgé(o) to obtain the correct formula for the
Poincaé polynomial of the moduli space by developing a theory wiiah be described as “Morse
theory in a stratified sense” [2].

1There are technical difficulties arising from the fact that|2 is not, in fact, Morse; this is the technical and importanitdbution
of Kirwan'’s proof, which has had wide applications.



We intend to follow the approach of Daskaopoulous, Weitsnaaud Wilkin, and in particular to prove
finite-dimensional analogues of their theorems to obtaiarsegal surjectivity result in the hypetkler case.

3 Progress made at the BIRS workshop and outcomes of the meeg

3.1 The Morse theory of the norm-square of the moment maps

e As in the outline of Wilkin’s work in Section 2 above, we firsted to prove that the gradient flow of
|lu1]]? converges to a critical point. A result of Lojasiewicz in [khows that this problem reduces
to proving that the gradient flow remains in a compact set. Aissatest case, we proved explicitly
that for the case af! acting onT*C", the flow indeed stays in a compact set. We also discussed how
Hitchin proved the gradient flow convergence in [7] for theeaf Higgs bundles, where he uses the
fact that the finite-time gradient flow lies onGE orbit to compute estimates along the flow. We can
describe the case of quiver varieties via a setup similaritohith’s. During the BIRS workshop we
computed simple examples of quivers and came up with speafiectures of analytic estimates on
the gradient flow which would suffice to prove its convergeincie case of quiver varieties.

e We also made progress at the BIRS meeting in understandigitigularites arising in the Morse
theory of||u1||?. Previous to the meeting, we proved the following theorewuathe Morse index of

[l

Theorem. Let M be a finite-dimensional hypeikler manifold, and leff () = ||u1(x)|> on M. Ata
critical point x € ug'(0) € M let N(z) C T, M denote the negative eigenspacefpfind letL(z)
denote the linearisation of the complex moment mapThenN (z) C L(x).

This is the first step in relating the Morse index calculagiofi| 1 ||? on the smooth manifold/ (where
Kirwan'’s results show that the index is well-defined) to therse index calculations on the singular
spaceu(g1 (0). To carry out the approach of [2] in our case, we need to shattlie negative directions
at a critical point areontained withirthe spaceb(gl(()), not just the linearisation of this space. During
the BIRS workshop we computed several concrete exampleshaneed that the negative directions are
indeed contained Within(gl(o) in each case. Using these examples, we formulated exgliategies

to prove the more general cases.

e We were also able to prove the following theorem regardiegtitical sets of the functiongju, ||* on
the space. ' (0) for quiver varieties.

Theorem. At a critical point of|| x4 || the quiver splits into sub-quivers. In particular, each nented
component of the set of non-minimal critical points can h@essed as the product of quiver varieties
of simpler quivers.

Hence we can inductively build up the critical sets by stadyjuivers with simpler structures. This is
analogous to the well-known setting for the Yang-Mills ftinnal, where a holomorphic bundle splits
into sub-bundles at a critical point (see for example [1DisTfact (for Higgs bundles) is used heavily
in [2], which leads us to believe that in the case of quiveietgas many of the methods of [2] for Higgs
bundles will hold.

3.2 Alternative Approaches

During the BIRS workshop, we also discussed possible @teapproaches to our problem. In particular,
we discussed the possibility of first taking théter quotientV := T*C"//,G with respect to the real
moment magg, and then further restricting ta: ' (0), asT*C" //// (a,0)G = NNpug ' (0). With this method,
the Kahler quotientV should be a smooth manifold, and we expect that its relatitimet hyperkhler quotient
M////G can be obtained using Morse theory for the norm square ofdhtex moment mafuc||?.

In this case, we hope to use ti$é-action rotating the fibers df*C™ and its corresponding moment
maps on the Bhler and hype&hler quotients in order prove that the cohomology of ttéhlkr quotient
surjects onto the cohomology of the hypé&hker quotient. Using Morse theory to build both of the qeiots
simultaneously, we note that the minimal level sets of§henoment maps are the same in both cases. As



we pass each higher critical level, we hope to prove thagstivjty still holds, and in order to show this we
have formulated the following conjecture:

Conjecture. For each connected componefitof the S-fixed set of7*C" //G, the restriction touz " (0)
induces a surjection in cohomolog¥,* (C') - H*(C"), and the two Morse indices agrege = Ao

We verified that this argument works for hyperpolygon spaggserforming explicit computations based
on [11]. In this case, th&*-fixed sets in both the &hler and hyper&hler quotients are compact projective
spaces, and our above conjecture holds. If this argumerkisaorgeneral, then we can establish the surjec-
tivity from the Kahler quotient to the hypeikler quotientd* (T*C" //oG) — H*(T*C"//// (0,0)G)- To
establish the hyped#tler analogue of Kirwan surjectivity, we must further btith Kirwan surjectivity for
the Kahler quotient:H¢,(T*C") — H*(T*C"//,G). Since the spaces involved are non-compact, we must
prove that the gradient flow converges in order to apply Kirwaurjectivity arguments.

A further approach which we discussed at BIRS is to do Morserthusing linear combinations of the
St-moment map angjuc|*. Although we need to restrict to the minimum |gic||2, the S*-moment map
much better behaved. We explored the possibility of stastiith one such moment map and perturbing it by
adding a multiple of the other, hoping to obtain the sameignbtithout the Morse-Kirwan difficulties.

3.3 Abelianization

Another related topic which we discussed at BIRS is the ‘fab&ation” of hyperkhler quotients. When
working with symplectic quotients, one can use the techesgaf Tolman-Weitsman [17] and Goldin [3] to
compute the cohomology a¥///T whereT is abelian. For quotients of the fori/ //G whereG is not
abelian, we must first abelianize, by restricting frairto a maximal torus”. Working in the hyper&hler
case, we studied the following abelianization conjectdréaméas Hasusel:

Conjecture (Hausel) LetG' be a compact, connected Lie group afich maximal torus inG. If both of the
hyperkhler quotients™*C" ////G andT*C" ////T are hypercompact, then

H(T*C Jy)j )"
Ann(er(g/9)?)

whereer(g/t) € Hj.(pt) is the equivariant Euler class of the representatipit of 7.

In [6], Hausel and Proudfoot prove &t-equivariant version of this abelianization theorem based
Martin’s proof [13] of the analogous result for symplectisogients. They use th&!-equivariance in order
to establish integral formulae, which allow them to repmeldartin’s Poinca® duality arguments in the
non-compact setting. However, our alternative proof [SMafrtin’s theorem does not use Poingatuality,
and we believe that this will allow us to generalize our téghas to the non-compact hypatker setting
without S'-equivariance. A close analysis of this conjecture lead®uselieve that it is best approached
using the algebro-geometric language of holomorphic sgotfg quotients, in lieu of hypedéhler quotients.

H(T°C"/})/G) =
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