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1 Overview of the Field
Deep learning (DL) brings unprecedented opportunities to solve challenging problems, ranging from image
and language perception to scientific computing. However, most DL successes are based on heuristics rather
than mathematical principles. Two prominent bottlenecks are: (1) lack of interpretability and performance
guarantee; (2) excessive computational costs and dependence on massive high-quality data. Efficient deep
learning (EDL) emerges as a branch of DL that aims to accelerate the prediction speed through a lightweight
deep neural network (LWDNN) while maintaining the level of performance (accuracy) of its heavyweight
counterpart. Though LWDNN is intended for AI applications in resource-limited environments, developing
principled EDL methods to resolve the two bottlenecks mentioned above benefits computational science.

In this workshop, we invited leading experts to present cutting-edge mathematical and computational
methods aligned with the themes of principled and reliable low-dimensional and sparse approximations, ef-
ficient and trustworthy generative modeling, effective utilization of data priors, and in-context efficient learn-
ing. The discussions also explored a wide range of scientific applications. A central focus of the workshop
was on developing low-cost, lightweight models with interpretability supported by rigorous mathematical
foundations, applicable across diverse tasks and domains.

The workshop delved into mathematics rooted in fundamental problems in cutting-edge AI. A major
line of low-cost networks comes from low-precision approximations of weights and activations of neural
networks (so-called quantization). If computing resources allow network re-training, mathematical issues of
non-standard gradient descent arise in constructing and validating proxy gradients (a.k.a. straight through
estimators) [44, 52]. Theoretical analysis of such a gradient driven learning algorithm to solve a challenging
class of discrete high-dimensional nonconvex minimization problems (a.k.a Quantization Aware Training
QAT) is emerging [130, 129, 73, 53]. When retraining is not an affordable option, as is often the case with
LLMs, post training quantization (PTQ) [80, 76, 36] aims to extract a quantized model locally by minimizing
a simplified surrogate loss at a significantly reduced algorithmic complexity than QAT. On the downside,
PTQ suffers a heavier performance degradation than QAT, especially at the very low precision (binary bit)
regime. Rigorous theoretical error analysis and backpropagation-free algorithms have been developed for
PTQ based on linear algebra, statistics, and optimization ideas recently [135, 136, 134]. These efforts are
essential for edge computing, as they greatly improve communication efficiency while safeguarding data
privacy. In particular, these advances can significantly advances the field of federated learning [77, 113, 101,
46, 68, 100, 102, 47].

Efficient approximations of the vanilla softmax attention block [111] in transformers (as adopted in LLMs
and computer vision) constitute another line of active research on reducing complexity to linear or almost lin-

1



2

ear growth in the regime of long input sequence length. Approximation ideas range from separable kernel
function (linear attention [57] and improved variants [82, 114, 42, 34]), sparsity [58, 142, 141, 85], dissect-
ing long- and short-range interactions [84], dilation [30], Fourier integral theorem [83] among others. A
composite approximation consists of a local window attention and a global token mixing operation such as
repeated window shifting [72], fast Fourier transform [106] and averaging [108]. Theoretical guarantees of
local-global attention approximations await to be studied beyond those formulated as equivalence theorems
in [106].

Reliability and safety of AI have caught the attention of the scientific community in recent years. AI safety
research challenges broadly fall into three types [8]: 1) creating trustworthy AI systems (Development), 2)
evaluating risks (Assessment), 3) monitoring and intervening after deployment (Control). Related issues are
sustainability and energy efficiency. Deep mathematical understandings contribute to the forecasting and
quantification tasks in the area. For example, rate distortion measures based on information theory helped
minimize artifacts generated by AI [59], provably reliable AI-based communication systems helped comply
with AI policies, and computability guarantees helped shape future energy-efficient AI computing [61].

The workshop explored how the EDL tools developed around AI contribute to computational mathematics
and scientific applications.

One scientific application of broad interest is to advance and accelerate traditional computational methods
of partial differential equations (PDE) based on EDL. Traditional methods are typically slow and costly in
three or higher space dimensions when resolving solutions that are either in the low regularity class (non-
smooth) or nearly singular (blow-up) in space or highly non-stationary (irregularly oscillatory) in time. In
contrast, EDL methods are much faster at inference (prediction) once trained. An intriguing research topic
at the workshop is on computing physically meaningful weak or multi-scale solutions through new formu-
lations being both physical and adaptive to optimization techniques and neural networks approximations.
New loss functions appeared recently for both the forward and inverse problems. Approaches for forward
problems include score-based optimizations, implicit entropy/viscosity solution representations, jump con-
dition satisfying and derivative-free approximations [128, 16, 143, 86, 19, 17, 120, 121, 139], going be-
yond physics informed formulations for differentiable (strong) solutions [56]. For both forward and in-
verse problems, interesting loss functions appeared in hybridized machine learning and classical methods
[88, 33, 92]. In connection with efficient attention and transformers, much progress is seen in neural oper-
ator learning [75, 66] of PDEs with applications to inverse problems, mean field games and turbulent flows
[78, 123, 65, 48, 37, 133, 55, 20]. An emerging area leveraging LLMs for scientific applications—including
solving PDEs—is in-context learning, which has shown remarkable success in AI and scientific computing
[15, 126, 27].

Another application is to design EDL methods to meet fundamental scientific complexities. Many phys-
ical problems—e.g. in material sciences and biophysics—exhibit two phenomena at the atomic level: the
atomic structure exhibiting intricate symmetries, and long-range interactions (LRI) among distant atoms,
causing the foremost computational challenges. Leveraging data symmetries in EDL enhances efficiency by
exploiting inherent patterns or invariances in data, reducing computational complexity, and improving model
generalization. For instance, symmetries such as translation, rotation, or scale invariance can be incorporated
into neural architectures like convolutional neural networks (CNNs), which use weight sharing to reduce
parameters while maintaining robustness to transformations. Techniques like group equivariant networks fur-
ther generalize this concept by designing layers that are invariant to specific symmetry groups and leveraging
steerable features, as discussed in [26, 109, 116, 7]. Additionally, data augmentation strategies exploit sym-
metries by generating transformed versions of training data, improving model robustness without additional
labeled data [94]. These approaches collectively minimize redundant computations and enhance performance
on tasks such as image classification and natural language processing. Learning LRI is another scientific chal-
lenge. Classical approaches, e.g. fast multipole method (FMM) and Ewald summation can compute LRI with
sublinear complexity; however, there is no guaranteed EDL approach yet for learning LRI. Recurrent neural
networks (RNNs) [87, 81], neural ODEs [24, 32, 125, 3], graph neural networks (GNNs) [40, 103, 6, 115, 5],
and multiscale representations [117] have been tailored to learn LRI for scientific computing.

Recent advances in diffusion- [96, 45, 99] and flow-based [69, 1, 70] generative models have significantly
expanded the frontier of scientific machine learning. These models offer powerful frameworks for learning
complex data distributions, enabling high-fidelity generation and inference in domains ranging from molec-
ular design [4, 104, 131] to climate modeling [64]. Diffusion models, inspired by stochastic processes, have
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demonstrated remarkable performance in generating realistic samples by iteratively denoising data, while
flow-based models provide exact likelihood estimation and invertible mappings, making them particularly
suitable for tasks requiring precise control and interpretability. In scientific applications, these generative
approaches are being leveraged to simulate physical systems, accelerate drug discovery, reconstruct high-
resolution images in medical diagnostics, and solve inverse problems in physics and engineering. Their
ability to integrate domain knowledge and scale to high-dimensional data makes them indispensable tools for
modern computational science. Mathematically, fast score matching algorithms have been proposed to accel-
erate the training of diffusion models. However, generation process of diffusion- and flow-based generative
models requires multiple expensive evaluations of a large neural networks, incurring massive computational
cost. Consistency models [98, 97] enable single-step generation by mapping any noisy sample directly to
data. Flow maps [38, 13] and mean flow models extend this capability by efficiently learning mappings
between two distributions.

Developing fundamentally new ideas and approaches called for close collaborations among mathemati-
cians, computational scientists, and domain experts. The workshop has been an excellent opportunity to
bring together world-leading researchers and young talents from relevant disciplines. It featured both ac-
complished and rising scientists at the intersection of mathematics, machine learning, and applications; and
created a lively forum for them to present recent developments and foster new interactions.

2 Recent Developments and Open Problems
Efficient and reliable deep learning brought up a cohort of fundamental mathematical and computational
issues worth studying from the perspectives of low dimensional approximations in functional and probability
spaces using various tools from numerical analysis and data science. We discuss recent developments and
point out related open problems systematically below.

Efficient neural networks and accelerated inference. Quantization is a widely adopted low-precision dis-
crete approximation of neural weights and activation functions to speed up network inference or prediction
post-training. In quantization-aware training (QAT), there remain many open problems in understanding em-
pirical algorithms such as binary-connect and straight-through estimators—two well-established quantization
algorithms for EDL. Mathematical analysis in recent years has shed light on potential instabilities and oscil-
lation behavior in minimizing population (infinite sample) loss of shallow networks [73], and a new notion
of coarse gradient [129] to guide descent in solving high dimensional large-scale discontinuous optimization
problems of broader interest. A significant recent theoretical progress in QAT is on dynamic behavior of
coarse-gradient (straight-through estimator, a.k.a STE) based training algorithms solving high dimensional
non-differentiable optimization problems with finite sample loss functions as objectives [53]. For a two-layer
neural network with binary weights and activations, sample complexity bounds in terms of the data dimen-
sionality guarantee the convergence of STE-based optimization to the global minimum. In the presence of
label noise, the training sequence satisfies an intriguing recurrence property where the iterates repeatedly es-
cape from and return to the optimal binary weights. The work leverages tools from 1-bit compressed sensing
[14] and dynamical systems. A challenging open problem is to extend the theory to deep networks. Another
interesting direction is the application of QAT as efficient PDE solvers [110].

Training DNNs is computationally expensive, e.g. training a large language model (LLM) costs millions
of dollars. Moreover, prediction using a well-trained DNN is also very expensive. One of the major con-
cerns of generative AI is that they are costly, e.g., a single search using ChatGPT is far more expensive than
the traditional search engines. Post training quantization (PTQ) has been adopted as a low cost solution in
LLMs. Two types of methods emerge from transformation techniques and rounding schemes. Scale invari-
ance transforms (e.g. efficient Hadamard rotations [2]) redistribute quantization difficulty between weights
and activations. Along the line of rounding schemes [80], recent works adopted principled discrete opti-
mization using greedy, sequential rounding strategies to select quantized weights to minimize the layer-wise
reconstruction error [76, 36, 135, 134]. The widely used OPTQ [36] is a sequential algorithm alternating
between rounding the current weight and adjusting future un-quantized weights to reduce error (a.k.a. dif-
fusion), yet without correcting quantization error in the activations or in quantizing previous layers. GPFQ
[76] explicitly corrects quantization error in both the weights and activations in each rounding iteration, as
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well as error from previous layers, but does not adjust the future un-quantized weights. Qronos [136] pre-
sented at the workshop subsumes and surpasses OPTQ and GPFQ, explicitly correcting quantization error
in both the weights and activations of previous layers while diffusing error into future weights. It gave the
first rigorous theoretical error bound for OPTQ and Qronos with stochastic rounding using convex ordering
and high dimensional probability. A related data-driven post-training low-rank compression technique with
recovery theorems is also developed. Earlier work on rounding (e.g. [80]) appeared too costly on LLMs due
to gradient computation. A recent progress is made via coordinate descent and close-form solutions [134]
free of back-propagation (gradient descent). Future work includes the extension of PTQ to multi-modal mod-
els (e.g. vision-language models), and combining per-layer and per-channel quantization strategies into a
mix-precision quantization framework.

Efficient attention is a highly active area to reduce complexity of transformers, save energy consumption
and accelerate their inference speeds on cloud and mobile platforms. Vanilla attention ([111], 2017) scales
quadratically in the input sequence length, and various efforts have been made since to reduce complexity to
linear scaling. LongNet [30] by Microsoft Research is a recent example on LLMs based on dilated attention (a
type of sparse attention among others [142, 141]) that yields strong performance on long-sequence modeling
and general language tasks, opening up new possibilities such as treating a whole corpus or even the entire
Internet as a sequence. Variants of linear [42, 43, 34] and recursive (mamba) attentions [41] can also be
competitive on certain data sets. On the other hand, linear complexity can be achieved by a composite
attention structured as an integrated local and global approximation of full attention. An example is vision
transformer Swin [72] where window attention (local) is shifted and globalized as network depth increases.
Along this line, recent work investigated Fourier transform (FWin [107, 106]) and averaging (SEMA [108])
based globalization techniques. Fourier transform is a robust choice for moderately long time series without
relying on enough network depths to globalize, while averaging is consistent with the asymptotic behavior
of vanilla and linear attentions in the large sequence length limit (a.k.a. dispersion [112]), and scales better
for large size images. For a fixed window size in the local attention, larger input image sizes (say from 2242

to 10242) yield longer tokens after patch embeddings, causing all transformer networks to degrade in top-1
accuracies on ImageNet-1K. Without a retraining (finetuning), the inference accuracy of SEMA out-performs
that of vision mamba [71] on larger size images. Future work remains to evaluate and further develop a SEMA
type composite attention framework for large images in medical sciences and multi-modal data, as well as
establish probabilistic error estimates where averaging is cast in a form of law of large numbers. For an
analogue of averaging (aggregation) operation to promote long-range interaction on graphs, see [5].

Efficiency and fast inference issues arise in generative AI recently concerning diffusion- and flow-based
generative models. The emerging research direction points to one/few step generation by imposing con-
sistency in training loss [98], distillation [39, 35], flow map [12] or mean flow [38] matching. Interesting
questions being discussed at the workshop include: 1) draw connections of one-step diffusion models with
optimal transport and Schrödinger bridge that have been studied intensively in mathematics, 2) study math-
ematical foundation and error estimates of one-step diffusion models, 3) explore one-step diffusion models
in scientific applications. Preliminary studies [139] suggest that one step diffusion models scale better than
optimal transport maps of distributions as the underlying dimensions of data samples increase. Score-based
diffusion models have been analyzed in terms of well-posedness and error bounds [22, 118, 79], as well as
design space and fast algorithms [119, 91, 51, 89], providing tools along with optimization techniques over
probability measure space [25] for making further progress. Interestingly, score functions in similar form
appeared in the adjoint Monte Carlo method for Boltzmann equations [16, 128]. Likewise, a deep learning
algorithm is developed for computing mean field control problems via forward-backward score dynamics
[143]. Establishing partial differential equation-based frameworks to analyze the generation error dynamics
is another emerging scientific area [50].

Connections between numerical analysis and efficient deep learning. The workshop revisited approx-
imation properties of neural networks with ReLU activations to functions or solutions of elliptic PDEs and
frequency contents of residuals under gradient descent minimization [95, 140]. The residuals tend to contain
much more high frequency errors than under piecewise linear finite element approximations, suggesting that
it is difficult for ReLU neural networks to approximate highly oscillatory or discontinuous functions [137].
Progress in approximating high frequency non-smooth functions and subsequent efficient learning is made by
choosing sine or truncated sine activation functions and scaling of initial layer in a structured and balanced
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multi-component and multi-layer network [138], a further development from [66].
Computing physically meaningful weak solutions to nonlinear PDEs is a timely topic in the workshop.

In contrast to adopting PDE residuals to measure the errors of strong (smooth) solutions [56], there appears
no simple and universal route. For first order Hamilton-Jacobi equations (HJE), the classical Lax-Oleinik
formula provides a viscosity solution for convex Hamiltonians. In [86], an implicit representation extends
the formula and engages a deep neural network for efficiently computing a variety of HJE’s in high dimen-
sions. Alternatively, enforcing entropy condition implicitly in a least squares type loss function incorporating
divergence form or classical well-established discretizations appeared as a viable approach in training neural
networks for efficiently computing shock waves in scalar conservation laws [18], interface and high frequency
problems [19, 60], and HJE [33]. The minimum requirement of neural network based computation of weak
(discontinuous) solutions calls for physics-preserved instead of physics-informed formulations. Yet another
avenue to compute solutions in a distribution sense stems from probabilistic representations in similar spirit
to scaling up to continuum mechanics from physical microscopic dynamics (stochastic differential equa-
tions). Martingale [17] and interacting particle ideas [120, 121, 139] led to spatial gradient free (mesh-free)
approximations, promising for high dimensional reaction-diffusion-advection (second order in space) PDEs,
and learning their physically parameterized solutions [62]. From a geometric view, parameterized Wasser-
stein flows [54, 124] offer another way to compute certain classes of high dimensional Fokker-Planck and
Hamiltonian PDEs without spatial discretization.

Theoretical analysis of the effectiveness of leveraging in-context learning for solving PDEs have also
been discussed in this workshop [126, 27]. In-context learning is a paradigm where LLMs or foundation
models solve tasks by conditioning on a few examples provided in the input prompt—without updating
model weights. When applied to PDEs, In context learning enables models to learn solution patterns from
a small number of example input-output pairs (e.g., boundary conditions and corresponding solutions) and
generalize to new, unseen PDE instances. In scientific computing, this approach is particularly valuable
because: (1) It bypasses the need for retraining or fine-tuning on each new PDE. (2) It allows zero-shot or
few-shot generalization to different geometries, boundary conditions, or PDE types. (3) It can be integrated
with physics-informed priors or neural operators to improve accuracy and interpretability.

Integration of symmetry into neural network architecture design. The workshop discussed symmetry-
integrating mechanism in neural network architecture design, ranging from both data representation [117] to
predictive and generative AI [144]. Symmetry is omnipresent in both data science and physical sciences. For
instance, scale invariance is a key factor in imaging sciences and intricate symmetries exhibit in crystalline
structures. Crystal symmetries, representing invariances under certain transformations, such as rotations
or reflections, influence the properties of the materials in unique ways. Integrating symmetry priors into
deep learning is essential for enhancing physical fidelity and achieving data efficiency. Different kinds of
symmetry-aware DNN architectures have been designed in the past several years, including invariant methods
and equivariant methods using different types of steerable features. But it is still hard to say which kind
of method is much more powerful; using higher-order steerable features requiring computing prohibitive
Clebsch-Gordan tensor product but the accuracy gain is marginal. Existing empirical studies show that it is
emerging to understand the role of invariant and covariant features and how architectures affect the models’
performance. In this workshop, we brought experts in the scientific community to share and discuss latest
advances in this scientific area. Meanwhile, our workshop has brought synergies between experts in different
domains to explore symmetry-aware neural nets as scalable and efficient surrogates for scientific discovery
and decision-making that are faithful to the underpinning physics for learning complex phenomena, e.g.,
plasma physics and fusion reactor design [128, 105, 92].

A challenging open scientific problem raised in this workshop is how to build multiscale symmetry-aware
neural network for efficient deep learning. Integrating multiscale features is fundamental for the success of
AI for Science, especially in computational molecular design. For instance, proteins are built from atoms
forming amino acids (residues), which link into a linear polypeptide chain (primary structure). This chain
folds into local secondary structures, like α-helices and β-sheets, each containing 2-40 contiguous residues
and stabilized by hydrogen bonds. These progressively fold into higher-order structures, determining the
protein’s 3D geometry and functions. Integrating multiscale molecular features and complex 3D molecular
geometry is essential for predictive modeling of proteins. Primary and secondary structures are among the
most critical multiscale features, since (1) they underpin higher-order structures, and (2) identical primary
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structures can even yield distinct secondary structures and properties. However, existing EDL methodologies
struggle to overcome the challenges in integrating multiscale features and molecular geometry efficiently.
Using a fully connected graph that incorporates all pairwise distances is common for capturing complete
molecular geometry [29]; however, it becomes costly for proteins with thousands of residues.

Sample efficient deep learning and multi-modal/multi-fidelity deep learning. Training DNNs is data-
hungry. Enforcing symmetry into DNN design can significantly improve data efficiency, which can be un-
derstood as a data augmentation scheme from a machine learning viewpoint [94]. Active learning (AL) is
another remarkable way to quench a DNN’s thirst for data. AL algorithms have access to a large but unlabeled
dataset and sequentially select the most “informative” examples for labeling. At each iteration, an unlabeled
example, e.g., the one that is most difficult to interpolate, is selected and labeled. The data interpolating
function based on the previously labeled examples predicts a label for each unlabeled example. We then
construct a new function that additionally interpolates each unlabeled example. However, the mathematical
understanding of how symmetry and AL algorithms benefit sample efficiency is still lacking. Without such
a theoretical foundation, we do not know the synergy between symmetry and AL. Even using AL, labeling
scientific data is still expensive and challenging.

Another challenge for applying EDL to scientific computing lies in multi-modality and/or multi-fidelity
of the scientific data: for a given problem, we can have image data, time series data, and even categorical
data. Some of the data are obtained from expensive and accurate simulations while others are sensed from
coarsed grained models. We have to apply an efficient data fusion mechanism to fuse these multi-modal and
multi-fidelity data for scientific applications. It has been noticed that transformers and graph neural networks
are two particularly appealing DNN models for deep learning with multi-modal and multi-fidelity data.

Reliable AI and scientific machine learning. Reliability and safety of LLMs have raised awareness of
researchers worldwide, especially in medicine, healthcare, robotics and algorithmic decision making. There
is an increased need of principled approaches to protect the society from harmful model outputs. One so-
lution is to learn from past mistakes in cybersecurity, draw analogies with historical examples and develop
lessons learned that can be applied to LLM safety [122]. Reliability also hinges on explainability, expressivity
and generalization. A more expressive network than ReLU network is the so called spiking neural network
[61], including spike response and leaky-integrate-and-fire models, which are more grounded in neural sci-
ence. Their promising applications to reliable computing and numerical PDEs with theoretical guarantees
are interesting to explore. Recently, global convergence theory is developed for neural network PDE models
in scientific machine learning and recurrent neural networks on long sequential data [90, 63] using neural
tangent kernel and distributional fixed point techniques.

Efficient and reliable deep learning methods have been applied to some of the most challenging scientific
computing problems, including protein structure prediction, many-body problems, learning closure models,
and simulation/generation of weak/discontinuous solutions of PDEs. Other promising scientific machine
learning tasks for further study include (1) fast prediction of cancer cell growth, infectious disease spreading
and wildfire burning; (2) inverse design of novel tailored crystal materials; (3) accelerating structure-based
drug and artificial swarm designs; and (4) computational imaging.

3 Presentation Highlights
There were a total of 45 talks in our workshop, with 34 in-person talks and 11 virtual talks. Each workshop
day was scheduled with topics related to our workshop themes, as summarized below.

• Monday June 23: Morning Session: This session highlighted innovative approaches at the intersec-
tion of data-driven modeling, optimization, and scientific machine learning. The first talk introduced
an adjoint-based optimization framework for the Boltzmann equation, offering a powerful tool for ki-
netic theory and transport problems. The second presentation focused on data-driven strategies for
constructing moment closures in radiation transport, addressing a key challenge in high-fidelity simu-
lations. The third talk explored graph-based active learning techniques for hyperspectral unmixing in
nearly blind settings, demonstrating the potential of AI in remote sensing and signal processing. The
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final talk provided a broad overview of neural networks in scientific computing (SciML), outlining
foundational concepts and posing critical questions that challenge current methodologies. Together,
these talks underscored the growing role of AI and optimization in advancing computational science
across diverse domains. Afternoon Session: This session brought together a compelling set of talks
focused on advancing scientific machine learning through rigorous mathematical frameworks, efficient
algorithms, and novel applications. The presentations covered a wide range of topics, including a new
approach for solving Hamilton–Jacobi equations with applications to optimal transport, and deep learn-
ing methods grounded in classical convergent numerical schemes for differential equations. Talks also
addressed optimal control in level-set front propagation models for complex flows and introduced ho-
motopy training algorithms to improve learning efficiency and stability. Further contributions included
efficient local-global attention approximations, unsupervised solution operator learning for mean-field
games, and provable in-context learning of partial differential equations (PDEs). Collectively, these
talks emphasized the integration of mathematical theory with scalable AI techniques to tackle high-
dimensional, dynamic, and physically grounded problems in scientific computing. Evening Session:
This session focused on cutting-edge approaches to solving inverse problems and learning PDE dy-
namics through data-driven and probabilistic methods. The first talk introduced DeepParticle, a novel
framework that learns PDE dynamics by minimizing the Wasserstein distance on data generated from
interacting particle methods, bridging physical modeling with deep learning. The second presentation
explored neural inverse operators for solving PDE inverse problems, emphasizing flexibility and gen-
eralization across different problem settings. The final talk presented HJ-sampler, a Bayesian sampling
method that leverages Hamilton–Jacobi PDEs and score-based generative models to address inverse
problems in stochastic processes. Together, these talks highlighted the power of integrating physics-
informed learning, generative modeling, and probabilistic inference to tackle complex scientific chal-
lenges.

• Tuesday June 24: Morning Session: This session explored the intersection of AI safety, uncertainty
quantification, and advanced mathematical modeling for high-dimensional systems. The first talk ad-
dressed the growing concerns around AI risks and surveyed current approaches to ensuring AI safety,
emphasizing the need for robust, transparent, and accountable systems. The second presentation in-
troduced martingale deep learning methods for solving very high-dimensional quasi-linear PDEs and
stochastic optimal control problems, offering a novel probabilistic framework for scientific computing.
The final talk focused on active operator learning with predictive uncertainty quantification for PDEs,
highlighting strategies for improving reliability and interpretability in data-driven models. Together,
these talks underscored the importance of integrating safety, mathematical rigor, and uncertainty-aware
learning in the development of next-generation AI tools for scientific applications. Afternoon Session:
This session featured a diverse set of talks that advanced both the theoretical and practical frontiers of
machine learning and scientific computing. Topics ranged from kernel-based methods for point cloud
analysis and sparse radial basis function networks for solving nonlinear PDEs, to symbolic and large
language model (LLM)-based approaches for modeling in the space of language. Several talks fo-
cused on foundational aspects of learning theory, including finite-sample analysis for binarized neural
networks, optimization over probability measure spaces, and quantization and compression of neu-
ral networks with theoretical guarantees. The session also explored generative modeling through a
Wasserstein bound for diffusion models under Gaussian tail assumptions, highlighting the importance
of rigorous analysis in understanding model behavior. Together, these talks reflected a strong emphasis
on mathematical rigor, computational efficiency, and the integration of structure and theory in mod-
ern AI systems. Evening Session: This session focused on advanced operator learning techniques and
their applications to complex physical systems. The first talk introduced self-test loss functions for
data-driven modeling of weak-form operators, offering a novel approach to improving model relia-
bility and generalization. The second presentation proposed the nonlocal attention operator as a step
toward developing foundation models for physical response prediction, emphasizing scalability and
expressiveness. The final talk demonstrated the accurate fine-tuning of spatiotemporal Fourier neural
operators for modeling turbulent flows, showcasing the potential of operator-based deep learning in
capturing intricate dynamics in fluid systems. Together, these talks highlighted the growing sophistica-
tion of operator learning frameworks and their transformative potential in scientific machine learning.
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• Wednesday June 25: Morning Session: This session delved into the theoretical underpinnings and
generative modeling aspects of deep learning, with a focus on partial differential equations (PDEs)
and diffusion-based methods. The first two talks provided rigorous mathematical insights into neural
network approximation and convergence, including integral representations of Sobolev spaces using
ReLUk activations and error estimates for linearized networks, as well as convergence analysis of
neural network methods for solving PDEs. The latter two talks shifted toward generative modeling,
examining the generation accuracy of diffusion models and multimodal sampling via denoising an-
nealing, and exploring the theoretical connections and discrepancies between diffusion processes and
flow matching. Together, these talks highlighted the interplay between mathematical theory and gener-
ative modeling in advancing the reliability and interpretability of AI methods in scientific computing.

• Thursday June 26: Morning session: This session brought together a rich blend of theoretical and
algorithmic insights aimed at deepening our understanding of neural networks and their applications
in scientific computing. The first talk provided a comprehensive overview of the mathematical and
computational foundations of neural networks, tracing their evolution from shallow to deep architec-
tures and examining their learning dynamics. The second talk introduced a novel framework based on
parameterized Wasserstein geometric flows, offering a fresh perspective on optimization and transport
in high-dimensional spaces. The third presentation focused on a variational Bayesian approach for
sequence model prediction and uncertainty quantification, highlighting the importance of probabilistic
reasoning in time-dependent data. The final talk addressed the convergence properties of real-time
recurrent learning (RTRL) algorithms for a class of recurrent neural networks, contributing to the theo-
retical understanding of training dynamics in sequential models. Collectively, these talks underscored
the role of rigorous mathematical analysis in advancing the reliability, interpretability, and efficiency
of modern AI systems. Afternoon session: This session showcased a diverse and forward-looking col-
lection of talks centered on the development of reliable, structure-aware, and scientifically grounded
AI methods. The presentations spanned a wide range of topics, including model-consistent strategies
for PDE joint inversion, structure-preserving machine learning for dynamical systems and data-driven
discovery, and generative modeling approaches such as stochastic interpolants for science and engi-
neering. Several talks emphasized the integration of physical principles into AI frameworks, such as
conservative neural network methods for nonlinear conservation laws and deep learning techniques for
tensegrity structures and constitutive laws in materials science. The session concluded with a broader
perspective on building reliable and sustainable AI systems, highlighting the importance of mathemat-
ical foundations in shaping the next generation of AI computing. Collectively, these talks underscored
the growing synergy between machine learning, physical modeling, and scientific applications.

• Friday June 27: The open discussion of Friday morning was lively with different viewpoints expressed
on EDL in scientific computing, and with EDL advances in scientific applications further illustrated.

4 Scientific Progress Made
Accelerating both the training and inference of deep neural networks (DNNs) is essential for the practical de-
ployment of Efficient Deep Learning (EDL) in artificial intelligence and computational science applications.
This workshop provided a valuable platform for exploring this challenge from multiple perspectives, bringing
together insights from mathematical theory, algorithm design, and real-world implementation. Throughout
the sessions, participants discussed a wide array of strategies aimed at enhancing the efficiency and scalability
of EDL. These included techniques such as sparsification and low-rank modeling [74, 31, 93], which reduce
computational complexity by exploiting the inherent structure of data and models. Knowledge distillation
methods [67, 39, 35] were also examined for their ability to transfer information from large models to smaller,
more efficient ones without significant loss in performance. Further discussions focused on quantization
techniques [129, 76, 136, 134, 110], which enable low-precision computation to reduce memory and energy
usage. Other promising directions included efficient attention mechanisms, optimal transport, one-step diffu-
sion and flow matching, and implicit or probabilistic representations of weak solutions to high-dimensional
partial differential equations (PDEs) [86, 120, 121, 19, 17, 33]. In addition, the workshop highlighted the
potential of homotopy-based training algorithms, higher-order and symbolic methods [127, 51, 89, 9], and
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sparse, geometry-aware data representations [117] to further advance the theoretical foundations and compu-
tational efficiency of EDL. These discussions not only deepened our understanding of the current landscape
but also sparked new collaborations and research directions aimed at pushing the boundaries of what EDL
can achieve.

A central theme of the workshop was the exploration of emerging research directions at the intersec-
tion of deep learning, generative AI, and applied mathematics. Participants engaged in in-depth discussions
on how foundational understanding, efficient algorithm design, and rigorous mathematical analysis can col-
lectively advance the capabilities of DNNs and generative models. These conversations spanned the entire
pipeline—from model architecture and training strategies to inference techniques, error estimation, and con-
vergence theory. The workshop also highlighted the growing impact of these developments on a wide range
of scientific applications. In particular, we examined how EDL and related methods can be applied to inverse
problems [88, 65], uncertainty quantification [78, 28], and remote sensing [21, 132, 11]. Further applications
included complex systems such as fluid dynamics and fusion reactor design [128, 16, 92, 20, 90], as well
as domains like atmospheric science [49, 107] and molecular modeling [10, 23]. These discussions under-
scored the importance of interdisciplinary collaboration in pushing the boundaries of what is possible with
AI-driven scientific computing. By integrating theoretical insights with practical challenges, the workshop
laid the groundwork for future breakthroughs in both methodology and application.

Looking ahead, the workshop participants expressed a strong commitment to maintaining ongoing com-
munication and fostering collaboration on shared research interests. By staying connected and exchanging
updates on their respective work, they aim to build a sustained and supportive research network that can ac-
celerate progress in EDL and its applications. To further stimulate research and broaden the impact of EDL,
participants also discussed the possibility of organizing future workshops and symposia at major venues such
as SIAM and leading AI conferences. These events would serve as valuable platforms for disseminating new
findings, attracting a wider community of researchers, and catalyzing interdisciplinary collaborations. Such
continued engagement is expected to play a key role in shaping the future trajectory of EDL and its integration
into scientific and technological innovation.

5 Outcome of the Meeting
The workshop featured a diverse lineup of speakers representing a broad spectrum of career stages and profes-
sional backgrounds. Participants included established professors, early-career postdoctoral researchers, and
advanced graduate students, each bringing unique perspectives and expertise to the discussions. These speak-
ers hailed from a wide array of institutions, including leading universities, government research laboratories,
and industry organizations. Geographically, the workshop achieved impressive international representation,
drawing contributors from North America, Europe, Asia, and the Middle East. In addition to its academic
and professional diversity, the workshop placed a strong emphasis on promoting gender balance. Organizers
made a concerted effort to ensure equitable representation of both male and female researchers across all lev-
els of seniority. This commitment to inclusiveness not only enriched the scientific dialogue but also fostered
a more welcoming and supportive environment for all participants, reinforcing the workshop’s dedication to
equity and diversity in the research community.

While the majority of the workshop sessions were conducted in person, each day included a dedicated
online component to accommodate remote participants. To ensure smooth coordination between the physical
and virtual audiences, a designated chairperson was assigned to oversee the online session. This individual
played a crucial role in managing the technical aspects of the hybrid format, facilitating real-time commu-
nication, and ensuring that remote attendees could actively participate in discussions, ask questions, and
contribute to the dialogue. This hybrid setup was thoughtfully designed to foster inclusivity and maximize
engagement across all modes of attendance. By bridging the gap between in-person and virtual participants,
the workshop created a dynamic and interactive environment that allowed for full participation regardless of
physical location. The seamless integration of both formats not only expanded the reach of the event but also
enriched the overall experience for everyone involved.

The communal atmosphere of the Banff International Research Station played a pivotal role in foster-
ing meaningful interactions among participants. Shared meals and outdoor activities provided informal yet
valuable opportunities for attendees to engage in open conversations, exchange ideas, and explore a wide
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range of scientific topics beyond the formal sessions. These relaxed settings encouraged spontaneous brain-
storming and the cross-pollination of research ideas across disciplines and career stages. A highlight of
this collaborative spirit was the open discussion held on Friday morning, which proved to be particularly
lively and intellectually stimulating. Participants expressed a variety of viewpoints, contributing to a rich
and multifaceted dialogue. The session also showcased recent advances in the application of EDL, illustrat-
ing its growing impact across different scientific domains. This vibrant exchange of ideas exemplified the
workshop’s commitment to fostering an inclusive and forward-thinking research environment.
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