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1 Overview of the Field
One of the major advances in condensed matter physics in the 20th century is the integer quantum Hall effect.
This phenomena describes the transport properties of non-interacting electrons constrained to the plane in
the presence of a constant, transverse magnetic field and a random potential. The fundamental mathematical
model for a single electron is the random Landau Hamiltonian. The mathematical setup for it is as follows.

In R2, given a constant magnetic field parameter B > 1 define the vector potential

A(x, y) =
B

2
(y,−x).

The Landau Hamiltonian
H0 := (−i∇−A)2,

has point spectrum (2N− 1)B, with each eigenvalue having infinite multiplicity.
We will consider the perturbed operator associated to a real scalar potential V ∈ L∞(R2) with |V | ≤ 1,

HV := (−i∇−A)2 + V. (1)

The bounds on B and V imply that the perturbed spectrum is contained in disjoint bands associated to each
Landau eigenvalue,

σ(HV ) ⊂ (2N− 1)B + [−1, 1].

Random Landau Hamiltonians are families of ergodic, random Schrödinger operators Hω := HVω ,
where Vω is a random potential of Anderson-type. These potentials are constructed from a real function
v ∈ CK0 (R2), for large K, called a single site potential, and a family of independent, identically distributed
random variables {ωj}j∈Z2 , by Vω :=

∑
j∈Z2 ωjv(x− j). We assume that the common probability measure

for ωj has the form ρ(ω0) dω0, with supp ρ ⊂ [−1, 1]. With these choices, the common spectrum Σ is
contained in disjoints bands as above with probability one. we refer to [(2n − 1)B − 1, (2n − 1)B + 1],
n ∈ N as the nth-Landau band.

These types of operators are examples of ergodic, random Schrödinger operator in dimension greater than
1 that exhibits both dynamical localization (“no transport”) and dynamical delocalization (“nontrivial trans-
port”). Band-edge localization, the existence of intervals of dense pure point spectrum with exponentially
decaying eigenfunctions almost surely, was been proved by Combes-Hislop [3], Wang [14], and Germinet-
Klopp [7]. Dynamical delocalization, the existence of nontrivial transport associated with an energy in each
Landau band, was proved by Germinet, Klein, and Schenker [6].
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Despite these advances, several technical difficulties prevent a deeper study of the localization-delocalization
transition for random Landau Hamiltonians. In particular, the study of local eigenvalue statistics (LES)
associated with these models is of interest in understanding the nature of the transport transition. LES are
studied through the large L limit of rescaled eigenvalues in the neighborhood of a fixed energy E0 ∈ Σ.
For random Landau Schrödinger operators HV , we first consider the restriction of V to cubes ΛL ⊂ R2,
denoted by VL. The perturbation of H0 by VL is denoted by HL

V := H0 + VL. The resulting self-adjoint
Schrödinger operator HL

V has discrete spectrum away from the Landau levels. The eigenvalues of HL
V are

random variables denoted by {Ej(ΛL)}∞j=1. The Wegner estimate (see Theorem 2 below) indicates that the
average eigenvalue spacing is |ΛL|−1. For a fixed energy E0 ∈ Σ, we define the random point measure dξL
by

dξL(s) =

∞∑
j=0

δ(|ΛL|(Ej(Λ)− E0)− s) ds. (2)

Following the works of Minami [12], Dietlein-Elgart [4] and Germinet-Klopp [7], one expects that the LES
is a Poisson point process in the localization regime. Due to the non-trivial transport, one expects a transition
in the LES in the region of nontrivial transport.

1. Semiclassical microlocal analysis: The first goal is to simplify the results of Wang on the Wegner
estimate for random Landau Hamiltonians in the Landau band edges. The main advance of [14] was
the treatment of non-sign definite, single site potentials v excluded from the results of [3]. As in Wang’s
analysis, we consider the semiclassical regime of large small h := B−1.

2. Local eigenvalue statistics. The second goal is the study of the local eigenvalue statistics (LES). The
open conjecture about the limit limL ξL is that it exists and is a Poisson point process if E0 is in the
region of localization, and a point process associated with the Gaussian orthogonal ensemble ifE0 is in
the delocalization regime. The second RIT goal is to prove this conjecture in the semiclassical regime
of large small h := B−1 for the random Landau Schrödinger operator.

The main tool of our investigations, as in [13, 14], is the use of microlocal methods to obtain detailed
spectral information for these models in the semiclassical regime of large magnetic field B. It is important
to note that these works are underpinned by the fundamental papers of Helffer-Sjöstrand [8] and Bellissard
et al [2] in which the Grushin problem formalism is used to derive a key quantity, baptized as the “effective
Hamiltonian” QV (µ). We will refer to a key theorem of theirs as the Bellissard-Helffer-Sjöstrand Theorem,
which states the following:

Theorem 1 (Bellissard, Helffer-Sjöstrand). For B sufficiently large there a family of zeroth order pseudodif-
ferential operators QV (µ) acting on L2(R), depending analytically on µ ∈ [−1, 1], such that

(2n+ 1)B + µ ∈ σ(HV ) ⇐⇒ 0 ∈ σ(QV (µ)).

For V as in (1), the family QV (µ) = V̂ (x;B−1Dx) − µ + R(B−1, µ) is defined for B ≥ B0 where B0

depends only on supR2 |DαV | for 0 ≤ |α| ≤ m, with m a dimensional constant.

Following the broad approach of [13], the PIs have performed a further analysis ofQV (µ) and shown that
one can extract crucial eigenvalue estimates necessary in order to study the nature of the LES.

3 Scientific Progress Made
We follow Germinet-Klopp [7] who gave the definitive results on LES in the localization regime for gen-
eral Schrödoinger operators (assuming localzation bounds, and the Wegner and Minami estimates), and the
original work of Minami [12] on lattice models. Working towards LES, one needs effective upper bounds
on the probability that the local Schrödinger operator HL

V has at least one eigenvalue (Wegner), respectively,
two eigenvalues (Minami) in a given energy interval. These estimates are crucial for establishing the limit of
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ξL and characterizing it as a Poisson point process. As mentioned, the Wegner estimate is also essential for
multiscale analysis resulting on exponential bounds on the resolvent with probability one, and for studying
the continuity properties of the density of states.

Our approach focuses on the effective Hamiltonian QV (µ). As above, we localize to a square ΛL.
Assuming that the single-site potential v = v0 has support inside a unit square, we study the zeroth-
order pseudodifferential operator V̂L corresponding to the restriction of the random potential VL(x, y) :=∑
j∈ΛL∩Z2 ωjv(x − j1, y − j2). We define V̂L to be the Weyl quantization of VL. Letting vj(x, y) :=

v(x− j1, y − j2), we obtain
V̂L =

∑
j∈ΛL∩Z2

ωj v̂j .

The spectral analysis of V̂L leads, via Theorem 1, to estimates on the Landau Hamiltonian with the restricted
potential HL := H0 + VL. Hence we obtain Wegner and Minami estimates for HL near the Landau band-
edges from a study of V̂L. The nonnegative, compact, zero-order pseudodifferential operator V̂L is a sum of
similar operators. We proved that the spectrum of v̂j is independent of j. If {ek} is the set of eigenvalues
of v̂0, then the eigenvalues of v̂j are {ωjek}. Since the random variables are independent and identically
distributed, the eigenvalues of operators v̂j are independent.

A tool which we use repeatedly, particularly in the proof of Theorem 3, is localization of the operators v̂j
in phase-space: that is, microlocality. Although vjvk = 0 if j 6= k, the operators v̂j are not local. However,
microlocality states that v̂j ◦ v̂j′ = OL2(h∞) for j 6= j′. It should be emphasized that these microlocal
statements turn out to be sufficient substitutes for those coming from the strong locality properties of purely
differential operators.

3.1 Wegner Estimate
There is a well-established approach to proving band-edge localization via multiscale analysis. One must
obtain a sufficient estimation on the probability thatHV has at least one eigenvalue in a specific interval I . For
sign-indefinite site potentials v, Wang gave such an estimation, however the estimate itself was insufficient
in establishing the Lipschitz nature of the integrated-density-of-states measures. Considering our desire to
obtain both Lipschitz continuity of the IDS measure and estimate the more restrictive event of HV having at
least two eigenvalues in I , it was important to fill in certain gaps in Wang’s proof of the Wegner estimate. We
state our final estimate below, proven during our residence at BIRS, albeit with a slightly different statement
than in [14, Proposition 3.1]. We emphasize that our proof still hinges upon Theorem 1:

Theorem 2 (Wegner Estimate). Fix a Landau level n and assume µ0 ∈ [b0, 1] for b0 > 0. Then, there exists
h0, depending only on v0, and b0, such that for h ≤ h0 and 0 < δ < 1,

P
[
(2n+ 1)B + µ ∈ σ(HVω

) for some µ ∈ [µ0e
−δ, µ0e

δ]
]
≤ CB|Λ|2δ,

where C depends only on v0, g, and b0. Furthermore, with h0 possibly smaller, we have

P
[
#
{
σ(HVω ) ∩ (2n+ 1)B + [e−δ, 1]

}
≥ 1
]
≤ C|Λ|δ.

This theorem is proven by a careful analysis of V̂ and a new bound on the number of eigenvalues of V̂L
near in a fixed interval away from zero. This bound follows by a Hilbert-Schmidt on the integral kernel of V̂ .

Although this estimate is sufficient to control the resolvent of HL, it is not strong enough to establish
the Lipschitz continuity of the integrated density of states due to the factor of |Λ|2. A stronger estimate with
|Λ| was obtained for sign-definite potentials in [3]. We were unsuccessful during our stay at improving the
factor of |Λ|2 to |Λ| in the first probability estimate. Such a linear factor would give us the first proof of the
Lipschitz continuity of the IDS measure at the band edges [13] for sign-indefinite potentials. However, as
one can see, the second estimate at the edge’s limit does give the Lipschitz continuity for energies in that
region. Note that our proof of a crucial eigenvalue counting estimate was simpler than that in [14, Lemma
3.1], relying solely on a simple calculation with Hilbert-Schmidt norms and the Weyl quantization formula.

Alternatively, again invoking Theorem 1 but this time using the more common route of estimating traces,
we have a somewhat different Wegner estimate:
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Theorem 3. Under the same hypotheses and given parameter ranges as in Theorem 2, but with h0 possibly
smaller, we have

P
[
(2n+ 1)B + µ ∈ σ(HVω

) for some µ ∈ [µ0e
−δ, µ0e

δ]
]
≤ C|Λ|

(
δ + |Λ| 12B− 1

2

)
.

While we do see an improvement in the overall power of |Λ|, the coupling of δ and |Λ| 12B− 1
2 forces other

difficulties to occur en route to Lipschitz continuity. However, the robustness of the overall method towards
band-edge localization makes the above estimate effective.

3.2 Minami Estimate
Obtaining a sufficient estimate for the probability of the event of at least two eigenvalues being in an interval
is more difficult, particularly for random Schrödinger operators on L2(Rd). The only result to date is that of
Dietlein-Elgart [4] who prove a weak Minami estimate at the bottom of the deterministic spectrum. It is not
clear that this proof can be extended to random Landau Hamiltonians. However, we have made progress in
the semiclassical regime of large B by exploiting the simple structure of the effective Hamiltonian.

We recall that the principal part of the effective Hamiltonian QV (µ) is V̂Λ. This operator is the sum
of pseudodifferential operators

∑
j∈Λ∩Z2 v̂j , where vj(x, ξ) = v(x − j1, ξ − j2), and v is the single site

potential. Hence, we can study V̂Λ by analyzing the independent, identically distributed random compact
operators ωj v̂j .

We start with a simple lemma on the spectrum of a single site’s quantization:

Lemma 1 (“mini Minami” estimate). Assume that σ(v̂0) is simple and has gaps of size at least h between its
consecutive eigenvalues. Then for all h ≤ h0,

P [# {σ(ωv̂) ∩ [µ0 − δ, µ0 + δ]} ≥ 2] = 0

This lemma, which turns out to be a key reduction, leads to our desired:

Theorem 4 (Minami estimate). Under the same hypotheses and given parameter ranges as in Theorem 2,
but with h0 possibly smaller, we have

P
[{
µ ∈ [µ0e

−δ, µ0e
δ] such that (2n+ 1)B + µ ∈ σ(HVL

)
}
≥ 2
]
≤ C|ΛL|2

(
δ + |ΛL|

1
2B−

1
2

)2

.

The proof of this theorem, like that of the Wegner estimate, begins with an analysis of one operator v̂j .
For the Minami estimate, Lemma 1 that states that a single operator v̂j cannot produce two eigenvalues in
the given energy interval. Consequently, at least two sites must contribute an eigenvalue, and because of
independence, this occurs with probability given by the square of the Wegner estimate for any one operator.
Since there are |ΛL| sites, the number of pairs is O(Λ|2).

To our knowledge, this is the first Minami-type resut in the context of random Landau Hamiltonians and
a major step towards the first LES results in this setting. We are currently en route towards completing the
arc started in the works of Combes-Hislop [3] and Wang [14].

3.3 Numerics and examples
Along the way to establishing the previously described results, we naturally stumbled upon a few smaller yet
noteworthy findings. First, in order to understand better the spectra of a single site v’s quantization, namely
v̂(x,B−1Dx), we ran some experiments in MatLab using a simple example. However, the results themselves
were not as illuminating as expected.

This eventually led us to being flexible with the support properties of v, and in turn to see that for v =
v(y2 + η2), which are functions solely of the principal symbol of the 1D harmonic oscillator, the eigenvalues
of the corresponding quantization v̂ can be explicitly computed and they are all simple. Such a finding
was done through some manipulations of the Mehler kernel, itself being the Schwartz kernel of the unitary
propagator for the harmonic oscillator, see the work of Hörmander [10] and Lerner [11]. This property feeds
into the hypothesis of our preliminary estimate Lemma 1, which itself leads to our desired Minami estimate
but in the case of a specific sign-definite potential. Subsequently work along these lines has allowed us to
verify the hypotheses of a spectral gap and simple spectrum for v̂ constructed with non-sign-definite single
site potentials v.
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4 Outcome of the Meeting
We are currently writing a paper on these results and working on establishing a theorem on the nature of the
LES in the large B regime.
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