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1 Backgrounds
The team meeting focused on the so–called mass–flux convection parameterization, whose basis was laid
down by Arakawa and Schubert (1974), and this formulation is adopted in majority of the operational forecast
models as well as the climate models today, yet not without problems.

The need for this team meeting emerged through informal discussions between the two senior scientists,
BK and JIY, who had been engaged on the investigation of this problem as that of basic mathematical for-
mulations, but different perspectives. BK’s PhD student, EL, arrived at the concept of segmentally–constant
approximation (SCA) independent of JIY (Yano 2014), was also asked to participate by further promoting
his initiatives.

2 Overview of the Meeting
The team meeting was organized around the two fundamental issues of the mass–flux convection parame-
terization: the closure and gray–zone problems. The discussion of the closure problem was focused on the
prognostic version of closure originally sketched out by Arakawa and Schubert (1974), and subsequently
pursued by Pan and Randall (1998), Yano and Plant (2012a, b), and Khouider and Leclerc (2019). All of
them focus on the problem of the convective energy cycle, so was the team discussion as the adopted header
below suggests.

The gray–zone refers to the question of the convection parameterization formulation when convection
is almost resolved, but yet still needs to be “parameterized” in a certain manner. The ultimate answer to
this question is clear from the analysis of Yano (2014) that we must adopt a representation of the subgrid–
scale processes obtained by the application of the segmentally–constant approximation (SCA) to the cloud–
resolving model (nonhydrostatic–anelastic model, NAM), but without any further approximations nor as-
sumptions. This formulation can be referred as NAM–SCA.

From the operational point of view, this problem is better addressed backwards, and as that of relaxing
various constraints in the existing operational operational schemes. The team discussion was organized with
this latter perspective, and we addressed various issues from this perspective. Those issues are reported under
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several headings in the following.
The following report focuses on the synergies that has emerged from the team meeting as well as impor-

tant perspectives for the further investigations, rather than trying to report every item that has been discussed.

3 Convective Energy Cycle and the Closure
Arakawa and Schubert (1974) propose the convective energy–cycle system as a basis for developing the
closure for the mass–flux convection parameterization formulation. This system consists of the prognostic
equations for the cloud work function, A, and the convective kinetic energy, K, with the additional unknown,
the convective mass flux, MB , defined at the convection base. Thus, an additional condition is required to
solve this system in a closed manner.

The most formal approach to address this question is to write down a formal relation between the convec-
tive kinetic energy, K, and the mass flux, M in a formal manner:

K =
M2

2σ
(1a)

where σ is the convection fraction. The mass flux, M , is related to its convedtion base value, MB , by

M = ηMb, (1b)

where η is a normalized vertical profile of the mass flux, which is defined by prescribed entrainment and
detrainment rates. Thus,

K =
η2M2

B

2σ
(1c)

Obviously, the problem is even less well posed by introducing another unknown, σ.
Khoudier and Leclerc (2019) attempt to solve this problem (Eq. 1c) by introducing the transform equation

for σ based on a phenomenological formulation for the transformations between the clouds types based on
a Markovian formulation. This approach relies on stochastic lattice model from statistical mechanics, where
various cloud types interact with each other and with the environment based on conditional probability rules
motivated by observations (Khouider et al. 2010; Khouider 2014). In the mean field limit, the probabilistic
model leads to a system of deterministic equations for the evolution of σ. When the variations of σ, in the case
of single cloud type, were incorporated to the energy cycle equations together with the evolution equation
of the cloud work functions, Khouider and Leclerc found a menagerie of rich dynamics including damped
oscillations, limit cycles, and chaos which overshadows the quasi-equilibrium assumption which is the basis
for closing the mass-flux formulation by Arakawa and Schubert (1974) and many others. It is worth noting
that an earlier study by Pan and Randall (1998) suggested that when σ is kept constant, the energy cycle
undergoes damped oscillations.

A simpler approach to indirectly take into account the variation in sigma, from a purely theoretical point
of view, is to set the relation between K and MB in a more phenomenological manner, by setting:

K = αMν
B (2)

where α is a constant depending on the convection types, and ν is a power to be specified. Here, to keep
the formula (2) analytical, we focus on the two possibilities, ν = 1 and 2. We can show that for ν > 2, the
equation for K becomes singular as MB → 0. Yano and Plant (2012a) show that the choice of ν = 1 is
favored against that of ν = 2 by reviewing the existing CRM (cloud–resolving model) results.

The case with ν = 1 is mathematically more fascinating, because the equation for K becomes fundamen-
tally nonlinear, consistent with the findings of Khouider and Leclerc (2019). A weakly nonlinear formulation
has been developed, and nonlinear interactions matrices, that characterized the evolution of the system, have
been identified. These interactions matrices can be evaluated from the data from the observational arrays or-
ganized during field campaigns, which are expected to provide insights on the basic nature of the convection
interactions.
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4 Ensemble Plume Dynamics with SCA
In proposing the modification of the existing formulation for convection parameterizations towards the gray
zone, we must keep in mind that the inherently conservative mentality of the operational community. For this
reason, the proposed modifications must be stepwise to be acceptable for the operational purposes. Unfortu-
nately, such an approach also inherently interferes withe mathematical attitude of the strictness that tends to
avoid to accept any ad hoc assumptions. However, here, we need to seek a certain compromise.

Under the notations introduced in considering the convective energy cycle, the gray–zone problem is more
formally stated as the formulation for representing the subgrid–scale convection asymptotically as σ → 1.
Note that in this asymptotic limit, the convection is no longer “parameterized” in its proposer sense: see a
good discussion on the notion of “parameterization” in Ooyama (1982). Convection must be almost explicitly
introduced, but not quite. And in the final limit of σ = 1, an explicit convection must fill out the given grid
box. Thus, the gray–zone representation of convection must be designed in such a manner that it continuously
transits into explicit convection as σ → 1.

An obvious and critical first step toward the gray–zone formulation is to remove one of the key assump-
tions in the standard mass–flux formulation, i.e., the steady–plume hypothesis. Here, by following the princi-
ple of the stepwise modification, we adopt exactly the same set of governing equations for the subgrid–scale
convection variables, but merely re–introduce the time dependencies into those governing equations. More
specifically, we choose not to explicitly introduce the equation for the convective vertical velocity, which is
not included in this standard set.

Here, more strictly, most of the operational models introduce an equation for the convective vertical
velocity in one way or another for practical purposes, as explained in Yano (2014), but rather in ad hoc
manner. Introducing the equation for the convective vertical velocity properly is of its own efforts to be
discussed later. Thus, this strategy contradicts with the principle of the stepwise modification introduced
above. Instead, we adopt the prognostic kinetic energy to predict the evolution of the convection–base mass
flux, MB .

A major difficulty in proceeding in this manner is the partitioning of the mass–flux profile, η(z), into the
part, ησ(z), due to the convection fraction, σ, and ηw(z), due to the convective vertical velocity, wc. Thus,
η(z) = ησ(z)ηw(z). This partitioning remains arbitrary with no clear principle to follow. Another difficulty
is to predict the temporal evolution of σ with time. It must be emphasized that being SCA an artificial
subdivision of the grid–box domain, again, there is no objective principle to predict its evolution.

To avoid both difficulties together, we simply set σ to be constant both in time and height. From a point
of view of the standard mass–flux formulation as formulated by Arakawa and Schubert (1974), this rather
artificial assumption has no consequence nor of serious concern, because it is formulated with the asymptotic
limit of σ → 0, thus the value of σ plays no part in its formulation, not to mention its time evolution. From
a point of view of reproducing the entraining–plume dynamics, neglect of the height dependence of σ may
appear to be a serious drawback. However, for the purpose of representing atmospheric convection as a
subgrid–scale process, this is probably the best choice is to make it constant with height, because this profile
is much closer to observed convection than the profile of the entraining plume. For this reason, in many
operational implementations, σ is set constant with height, or close to it, as discussed in Sec. 7 of Ch. 10 (de
Rooy et al. 2015) of the monograph by Plant and Yano (2015).

The final formulation is rather lengthy, and to be presented elsewhere soon with associated numerical
results, that we plan to pursue.

5 Convective Pressure Problem
As mentioned above, the current operational mass–flux parameterizations introduce the governing equation
for the convective vertical velocity for the practical purposes. However, the adopted formulation is based
on a drastically simplified momentum equation based on the drag formulation. In short, the pressure term
is neglected in the formulation: development of a solver for the convection pressure is a crucial operational
need for this reason.

Lack of the proper formulation for the pressure term is also a major obstacle proceeding to a fully prog-
nostic formulation for the subgrid–scale convection representation, say, based on SCA. The present team



4

meeting made a great deal of progress with this convective pressure problem.
Technical notes (Yano 2015a, b) provided a basis for the discussions. As a result of these discussions,

various shortcoming of the formulations in these notes are pointed out, and a way for developing a mathemat-
ically more rigorous formulation was outlined. It is also likely to drastically simplify the formulation. The
full formulation is still under development, and will be reported elsewhere.

6 Fully Prognostic Formulation for the Subgrid–Scale Convection Rep-
resentation

The final goal of our team meeting has been to develop a formulation for the fully prognostic formulation for
the subgrid–scale convection representation based on SCA. For this reason, we had extensive discussions on
this subject.
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