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ABSTRACT. Let X and Y be complex Banach spaces with Bx denoting the open unit ball
of X. This paper studies various aspects of the holomorphic Lipschitz space HLo(Bx,Y),
endowed with the Lipschitz norm. This space is the intersection of the spaces, Lip,(Bx,Y)
of Lipschitz mappings and H*(Bx,Y) of bounded holomorphic mappings, from By to Y.
Thanks to the Dixmier-Ng theorem, H Lo(Bx, C) is indeed a dual space, whose predual Go(Bx)
shares linearization properties with both the Lipschitz-free space and Dineen-Mujica predual
of H*(Bx). We explore the similarities and differences between these spaces, and combine
techniques to study the properties of the space of holomorphic Lipschitz functions. In particular,
we get that Go(Bx) contains a 1-complemented subspace isometric to X, we analyze when
Go(Bx) is a subspace of Go(By ), and we obtain an analogous to Godefroy’s characterization of
functionals with a unique norm preserving extension to the holomorphic Lipschitz context.

1. INTRODUCTION

Linearizing non-linear functions is a typical procedure in infinite dimensional analysis. Orig-
inating nearly 70 years ago with Grothendieck [30] (and his research about linearization of
bilinear mappings through the projective tensor product), the practice of identifying spaces of
continuous non-linear functions with spaces of continuous linear mappings defined on Banach
spaces has proved to be a useful technique. Accordingly, the study of geometric and topological
properties of these linearizing Banach spaces has increasingly attracted interest.

Lipschitz functions (defined on pointed metric spaces) and holomorphic bounded functions
(defined on the open unit ball of a Banach space) are really different both as sets and as function
spaces. However, when looking at their linearization processes several similarities emerge. The
purpose of this article is to study, in light of these resemblances, the new set of functions
consisting of the intersection of the previous sets. Lipschitz holomorphic functions defined on
the open unit ball of a Banach space taking the value 0 at 0 will be our focus of attention. In
the exploration of this set we take advantage of a result of Ng [38] concerning the existence of
preduals and all the background about related linearization processes.

We begin with a brief review of important terms and concepts. General references for Lipschitz
functions include [29] and [42] and a standard reference for holomorphic functions on finite
or infinite dimensional domains is [37]. The linearization process for bounded holomorphic
functions is originally developed in [35]. A review about linearization procedures both for
Lipschitz functions and for bounded holomorphic functions appeared in the recent survey [26]
while a general approach to linearizing non-linear sets of functions was settled in [17].
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For a metric space (M, d) and a Banach space Y, let Lip(M,Y’) be the vector space of all
f: M — Y such that ||f(z1) — f(x2)|| < Cd(xy,22) for some C' > 0 and for all z; # x5 € M.
The smallest C' in the above definition is the Lipschitz constant of f, L(f). Let 0 € M denote
an arbitrary fixed point. In order to get a normed space, we will be particularly interested in
the subspace Lipy(M,Y") consisting of those f € Lip(M,Y") such that f(0) = 0. In this way,
L(f) =0if and only if f =0, and so ||-|| = L(+) defines a norm on Lip,(M,Y).

For complex Banach spaces X and Y and open set U < X, denote by H*(U,Y’) the vector
space of all f: U — Y such that f is holomorphic (i.e. complex Fréchet differentiable) and
bounded on U, endowed with the supremum norm. In both the Lipschitz and H* situations, if
the range Y = K, then the notation is shortened to Lip,(M) and H*®(U).

It is known that Lip,(M) and H*(U) are dual spaces and that in some special situations,
the predual is unique. The construction of a (or, in some cases, the) predual follows the same
lines for both the Lipschitz and H* situations: Calling X one of Lip, or H*, we consider those
functionals ¢ € X* such that ¢|z_ is continuous when By is endowed with the compact-open
topology. Among such functionals are the evaluations f ~» §(z)(f) = f(z) where z ranges over
the domain of f € X. In the case of Lipy(M), the closed span of the set of such ¢ will be denoted
F (M) while the analogous closed span for H*(U) is G*(U). Each of these is a Banach space,
being a closed subspace of Lipy(M)*, and H*(U)*, respectively. Using a standard technique
developed by Ng [38], it follows that F(M)* = Lipy(M) and G*(U)* = H*(U).

Among the most important common features of Lip, and H* is linearization. In each of the
two cases below, ¢ is the evaluation inclusion taking x ~ §(z). Also, for f in either Lip,(M,Y") or
H*®(U,Y), Ty is the unique linear mapping making the diagram commute. Moreover, | f| = |7/

Mty vl .y
| A | A7
F(M) Gge(U)

Notation. X,Y will stand for complex Banach spaces. We denote by By (respectively Sx) its
open unit ball (respectively unit sphere). £(X,Y") denotes the space of continuous linear maps
from X to Y, and X* = L(X,C). P("X,Y) stands for the space of continuous m-homogeneous
polynomials, that is, those P: X — Y so that there exists a continuous m-linear symmetric
map P: X x -+ x X - Y with P(z) = P(z,...,z). We also write P("X) = P("X,C). We
say that P € P("X,Y) is of finite type if P(x) = >J;_,[2}(x)]™y; for certain 27 € X* and
y; €Y. Pp("X,Y) stands for the space of finite type m-homogeneous polynomials. Moreover,
we set P(X,Y) (resp. Pr(X,Y)) to be the space of finite sums of continuous homogeneous
polynomials (resp. homogeneous polynomials of finite type) from X to Y. Also, D(z,r) (resp.
C(z,r)) denotes the open disc (resp. the circumference) in C centered at z with radius r, in
particular D = (0, 1).

Recall that X is said to have the Bounded Approximation Property (BAP) if there is A > 0
such that the identity /: X — X can be approximated by finite-rank operators in AB(x x)
uniformly on compact sets. If A = 1, then X is said to have the Metric Approximation Property
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(MAP). If X has A-BAP and Y is N-complemented in X, then Y has A\'-BAP. We refer the
reader to [19] for examples and applications.

Organization of the paper. Section 2 introduces the main space of interest, HLy(Bx,Y), con-
sisting of those functions that are in both Lip,(Bx,Y) and H*(Bx,Y'). A number of properties
of HLo(Bx,Y) are discussed and it is proved that this space really differs from Lipy(Bx,Y)
and H*(Bx,Y) (in the sense that a nonseparable space can be injected in between). Section 3
contains a study of the predual Go(Bx) of HLy(Bx) (where Y = C). Specifically, we will see
that H Lo(Bx) has a canonical predual whose properties echo those of HLo(By) and Lipy(Bx).
When X = C with open unit disc D, one consequence of our work is a characterization of the
extreme points of the closed ball of HLy(D) and of the norm attaining elements of HLy(ID)
considered as the dual of Gy(ID). The final two sections involve a closer inspection of Gy(Bx).
Section 4 considers the relation between Gy(Bx) and Go(By) when X < Y. The final section
specializes to the case of X < X™**. Among other things, under natural conditions on X and
X** we characterize when a function f € HLo(Bx) has a unique norm preserving extension to
HLo(Bx=+). Both sections make use of the concept of (Arens) symmetric reqularity, which is
reviewed in Section 4.

2. HOLOMORPHIC AND LIPSCHITZ FUNCTIONS

In the case that the metric space M is By, the open unit ball of a complex Banach space
X, and Y is another complex Banach space, Lip,(Bx,Y") is the space of Lipschitz functions
f: Bx = Y with f(0) =0 and:

L4g) - s U122 10

: x;éyeBX}.
|z =yl

It is well known that L(-) defines a norm on Lip,(Bx,Y) and (Lip,(Bx,Y’), L(-)) is a Banach
space. Indeed, Lip,(Bx,Y’) is isometrically isomorphic to the space of operators L(F(Bx),Y),
where F(By) denotes the Lipschitz-free space over By (see e.g. [27, 42]).

Next, H*(Bx,Y') stands for the space of bounded holomorphic functions from By to Y, which
is a Banach space when endowed with the supremum norm. Analogous to the Lipschitz case
above, we have that H*(Bx,Y') is isometrically isomorphic to £(G*(Bx),Y), where G*(Bx)
is Mujica’s canonical predual of H*(Bx) [35] (we will review the space G*(Bx) in Section 3).

The parallel behavior of these Lipschitz and H* spaces was the authors’ motivation to
introduce and study the following space and its canonical predual:

HL()(B)(,Y) = LlpO(BX,Y) M HOO(B)(,Y).

We will also denote HLo(Bx) = HLo(Bx,C). Sometimes we will deal with holomorphic
Lipschitz functions without assuming f(0) = 0, and then we use the notation HL(Bx,Y) and
HL(Bx).

Since both normed spaces H*(Bx,Y) and Lip,(Bx,Y) are complete (with their respective
norms) and each f € HLo(Bx,Y) satisfies || f|o < L(f) we easily derive that HLy(Bx,Y) is a
Banach space with norm L(-).

Given f € H*(Byx,Y) such that df € H*(Bx,L(X,Y)) and f(0) = 0, by the Mean Value
Theorem, we have that | f(z) — f(y)|| < |df||||z — y| for any x,y € Bx. Then, f € Lip,(Bx,Y)
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and L(f) < |df|. Conversely, if f € HLo(Bx,Y) we know that df € H(Bx, L(X,Y)). Also, for

x,y € By,
)] = fmy | DI < 1),

This means that df belongs to H*(Bx, L(X,Y)) and |df| < L(f).
This shows that there is another useful representation of our primary space of interest.

Proposition 2.1. HLy(Bx,Y) = {f € H®(Bx,Y) : df € H*(Bx,L(X,Y)); f(0) = 0}.
Moreover, for every f € HLo(Bx,Y), L(f) = ||df|; that is, L(f) = sup,ep, |df(z)].

Note that P|g, € HLo(Bx,Y) for every P € P(X,Y) such that P(0) = 0, a fact that will be
useful later.

When Y = C, we can define a mapping
o HL()(B)() - HOO(BX,X*)
[ df

In general, ® is an isometry into H*(Bx, X*), although if X also equals C, then ® is onto.
Indeed, in the one-dimensional case, ® is surjective since every holomorphic function f on ID has
a primitive that is Lipschitz whenever f is bounded. However, ® is not surjective for X # C.
Indeed, given P € P(*X), we have that P|p, € HLo(Bx) and dP € L(X, X*) is symmetric (i.e.
dP(z)(y) = dP(y)(z) for every z,y € X). Note that df is linear only when f is a 2-homogeneous
polynomial. Hence, a non-symmetric element of £(X, X*) (which always exists whenever the
dimension of X is strictly bigger than one) cannot be in the range of ®.

In particular, we see that
HLo(D) = {f e H*(D): f(0) =0 and f' € H*(D)}.
A lot of research has been done on HLy(ID) and on HLy(U) for certain domains U < C™ such

as the Euclidean ball. See, e.g., [1, 10, 11, 12, 14, 18, 39, 40] where this topic is approached
from different viewpoints than what is done here.

For the case of HL(Bx,Y) we consider the norm | f|xz = max{|f(0)|,L(f)}. The fact
that this is a norm and that (HL(Bx,Y),| - |lxz) is a Banach space follows easily. Note
that | flle < 2|f|wz for any f € HL(Bx,Y). Also, it is plain to see that HLy(Bx,Y) is a
1-complemented subspace of HL(Bx,Y). Moreover, motivated by a similar result for Lip,-spaces
(see [42, Th. 1.7.2]) we get:

Proposition 2.2. Let X, Y be complex Banach spaces. Then HL(Bx,Y) is isometric to a
1-complemented subspace of HLo(Bxg,c,Y)-

Proof. Consider ®: HL(Bx,Y) — HLy(Bxg,c,Y) given by ®f(z,\) = f(z) + (A —1)f(0). It
is easy to check that ®f is Lipschitz with L(®f) < | f|,,, for every f e HL(Bx,Y). Note that

[2/(x,0) =@y, 0 . _
) e = R AL RECE

[2/(0,1) = ©/(0,0)] _
L) > LRSS = o),

so we actually have L(®f) = | f|l,,,. Thus ® is an into isometry.

and also
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Now consider T: HLy(Bxa,c,Y) = HL(Bx,Y) given by Tg(x) = g(x,0) + g(0,1). One can
easily check that |T]| < 1 and T o ® = Iy, y). Therefore P = ® o T is a norm-one projection
from HLy(Bxg,c,Y) onto ®(HL(Bx,Y)).

O

Note that there are plenty of examples of non-Lipschitz functions in H* (D). Indeed, given
a sequence (b,) < C\{1} with |b,| =1 and b, — 1, define f: {b,} U {1} — C by f(1) =0 and
f(by) = A/|bn — 1|. Then the Rudin-Carleson theorem provides an extension of f which lies in
the disc algebra A(ID) and has the same supremum norm, but it is not Lipschitz.

We will devote the rest of the section to show that HLy(Bx) is much smaller than both
H*(By) and Lipy(Byx). More precisely, we will show that /., is isomorphic to a subspace of
H*(By) made up of non-Lipschitz functions (expect, of course, the function 0), and that o, is
isomorphic to a subspace of Lip,(Bx) made up of non-holomorphic functions (except 0).

In the following results, we will use the function ¢,: C — C given by

Az +1
@A(Z) = 2 :
It is a standard fact that
(1) ox(N) =1, Joa(2)] < 1 for all z € D\{A}.

We also need the following technical lemma, which in particular provides another example of
a non-Lipschitz function in the disc algebra A(ID) (that is, the space of uniformly continuous
functions in H*(D)).

Lemma 2.3. Fiz A € C with |A\| =1 and define f,: C — C by

{1 + Az — 1)V gf 22 )

W& =9, ifz= A\

Then

(a) fx is holomorphic in C\{A}.

(b) The restriction of fx to D belongs to A(D)\HL(D).

(c) |falz)] < 3 for all z € D.

(d) If 0 < s < 1, then | fi(2)] < =L for all z € D such that |z — A| = s.
(e) Given ke N and 0 <6 < 1, we have that

sup (- #h) (2)] = +oo.
z€D(A,8) D

Proof. A standard computation shows that (a) holds. Now, to prove the rest of the claims it is
enough to consider the case A = 1. Denote f = f; and take z = a + ib € D\{1}, with a,b € R.
We have that

1

er—1 R

1 a—1 0
=1 = e@1Z2+2 L =1,

Hence f, defined as f(z) =1+ (z — 1)eﬁ is holomorphic on C\{1} and continuously extends

to D. Further |f(z)| < 3 for every z € D. Let us show that f is not a Lipschitz function, i.e. f
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belongs to A(D)\HL(D). For that, it is enough to check that f’ is not a bounded function on

D. Observe that
rpy B2 .
fie) = Se,
for every z € C\{1}. Therefore, taking a null sequence 0 < 6,, < 1 and setting z,, := cos 6,,(cos 0, +
isin#,), we obtain that the sequence (z,) < D converges to 1 and

1 cos? 6, — 1
Re( ) = — =—1
2, — 1 (cos? 0, — 1) + sin” 0, cos? 6,

for every n. Thus,

-2
“n ‘6_1.
1

|/ (zn)] =

Consequently, lim,, , o |f'(2,)| = +0. Thus far we have proved (a), (b) and (c¢). Let’s check
(d). We have

Zn — 2‘ Re (an—l)
e =
1

Zn —

Zn —

1
ez—1

, z—2 1
= . <1 —’
7 ‘z—l +|z—1|

for all z € D. Hence, if 0 < s < 1 and z € D with |z — 1| > s we have that |f'(z)| < =

Finally we prove (e). Again it is enough to consider the case A = 1 and we denote ¢ = ¢;.

Since (fo")'(2) = f/(2)¢"(2) + f(2)(¢") (2) for all z € C\{1} and f - (¢*)" is continuous on D
and hence bounded on D), it is enough to prove that f’- ¢* is unbounded on D(1,8) N D for any

d > 0. But using the same sequence (z,),

1

. ! k _ . —
i [f(2)¢ )] = lim e .
Since there exists ng € N such that z, € D(1, ) n D for any n = ny, it follows that (e) holds.

O

Zn — 20|/ Zn + 1\F
|(=5=) | =+
Zn — 1

We denote, for convenience HY (D) = {f € H*(D) : f(0) = 0}.
Theorem 2.4. The space Ly, is isomorphic to a subspace of HF (D)\HL(D) u {0}.
Proof. To begin with, we choose a sequence (\,) € C\{1} convergent to 1 with |A,| = 1 and
An # A for every m # m. Consider the function ®: C? — C defined as

Az 41
2

Oz, \) =
and, for each p € N, the compact subset of C?
Ky = {(Mp; An) :me Non # phu {(A, 1)}

We have |®(z,A)| < 1 for every (z,A) € K, by (1), and ® is continuous on C?. Hence, there
exists 0 < s, < 1 such that [®(z,\)| <1 for every (z,\) € K, + D((0,0), s,). In particular, if
we denote @, () := ®(-, \,),

(2) [en(2)] = |@(z, \)] < 1,
for all z € D()\,, s,) and all n # p.
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Now, since the sequence (\,) is convergent to 1 we can find a sequence of positive numbers
(rn) that tends to 0 such that 0 < 2r, < s,, for all n € N and such that

D\, 2r,) nD(N, 21,) = &,
for all n # p. Moreover, as (r,,) converges to 0, for each n € N the set
= U E()‘107 2rp) v {1},
p#n

is also a compact subset of C, (although it is not a subset of D) and |¢,(2)| < 1 for all z € L,,.
Since |, is continuous on C we obtain that

max{|pn(2)] : z€ C, U L,} < 1,

J— e}
for all n, where C,, = D\ID(\,, r,). As a consequence, for each n the sequence (cp’fb) converges
k=1

uniformly to 0 on C),, U L,, and we can find a k,, € N such that
T’n

(3) o (2)] < EssE
for every z € C), U L,,.
We denote f, := f,, for n € N and we define F': {,, — H*(D) by

ee}

F(an) = Z anfngpflna

n=1
We claim that F' is a topological isomorphism onto its image. Let us check that for each
(ay) € Ly the series F(a,) is pointwise convergent in the closed disc.

Consider z € D. We have two possibilities:
a) z€ D\ (U,_, D(As, 7). In that case, by (3) and Lemma 2.3. (c),

(4) Z anful2)en ()] < ) 3lan|3n+1 < %H(an)oo-

n=1
Hence F'(a,)(z) exists for each z. Moreover, we have proved that the series F'(a,) converges
absolutely and uniformly on the open set D\( U2, D(\n, rn)> Thus F'(a,) is holomorphic in
that open set.

b) there exists a unique ng € N such that z € D(\,,, 2r,). By (3), for every u € D(\,,, 2r,,)
we have that

kn |an|
bl (] < S| < 2,

for all n # ng and

kn
| frg (1) P (W)] < Blan,|-
Hence,

(5) Z |anfn(2)@n" (2)] < 4 (an)]oo,

and we have obtained that for every z € D(\,,, 27, ), F(a,)(2) exists and in fact |F(a,)(z)| <
4|(an)| - But our argument actually shows that the series F'(a,) is absolutely and uniformly
convergent in the open disc D(\,,, 2r,,). Hence, F'(a,) exists and it is holomorphic on that set.



8 R. M. ARON, V. DIMANT, L. C. GARCfA-LIROLA, AND M. MAESTRE

Thus F(a,) is holomorphic on D U | J)” , D(\,, 2r,) and F: £y, — H™(D) is a continuous
mapping since it is linear and
[E(an)] < 4l(an)]e,
for all (a,) € lo.
Now we check that F' is bounded below. We already know that for each (a,) € {4, the
function F(a,) is holomorphic on D U | J7”, D(\,, 2r,,) and bounded on D. Thus, using (3) and
the fact that \, € D, we get

"n
IF(@n)] = sup | Fla,)(2)| > sup | F(an) ()| > sup {|ap| ) 3|an|w}

peN peN np

> ap g - Lol _ ol

peN 2

for every (a,) € {u.

Now we check that if (a,) € €\{0}, then F(a,) is not Lipschitz.
Consider (a,) € 4x\{0}. There exists ny such that a,, # 0. We are going to show that
F(ay)'(2) is not bounded on D(A,,, 5%) N D.

By the Weierstrass theorem,
+00

F(a,) (z) = Z Gn(fn%]zn)/(z)’

n=1

for every z € D u | J,_, D(\,, 2r,). If n 5 ng, then by the Cauchy integral formula

/ 1 e (u)
(o) (2) = Gy —du,
Tt JC(Ang rng) (u—2z)

for every z € D(\,,, 7). Thus, by (2) and (3), we obtain

n 9 7,
sup  |(05) (2)] < E ° sup  John (u)] < ——

Z 2 n+1
ZGD(AanTO) 3rno) [u—=Ang|=Tng 4Tn0 3

11
<—5

T 3"
and we get

!
|(Fan) ()] < 1)l (] + | fa(@)|(037) (2)]

<1+rn7’n 11<1+11
Ty 3L T 3n T3y, 30t

where in the second inequality we have applied, (2), (3) and the properties of f,, and f/ given
in Lemma 2.3. Hence,

F(@n) ()] = lan || (Fron®) () = D laal|(fuich™) (2)]

n#ng

1 3

> fangl (o) ()] = @)l (5 + 5)

for every z € D(\,,, 5%). But, by Lemma 2.3.(¢), we know that

kn
sup |(fnogon0°)/(z)| = 400.
2€D(Ang, 52 ) AD
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Thus, F(a,)" is unbounded on D(\,,, %) N D and we have obtained that F(a,) does not belong
to HL(D).
Finally, if we define Fy: ly, — HT (D) by Fi(a,)(z) := zF(a,)(z) for (a,) € {x and z € D, it
is clear that F} is an isomorphism onto its image and that F} (¢ \{0}) < HF(D)\HL(D).
0

Straightforward modifications of the above arguments show that the space ¢ is isomorphic to
a subspace of A(D)\HL(D) u {0}, where A(D) denotes the disc algebra. We note that there are
known results far stronger than this. Indeed, in three relevant papers [10, 11, 12], L. Bernal
et al. have obtained many results on the existence of large subspaces of functions that belong
to AD)\HL(D) u {0}. In particular, in [10, Th. 4.1.c] the authors show that there exists an
infinite dimensional Banach space X contained in A(D) such that any non-null function in X is
not differentiable on any point of a fixed dense subset of T. Also, in [12, Th. 3.4}, they prove
that there exists an infinite dimensional Banach space X, contained in A(ID), (which, however,
is endowed with a stronger norm than the one inherited from A(D)) such that if f € X, then
the restriction of f to T is nowhere Holder on T.

Theorem 2.4 can be extended to any complex Banach space. We denote
Hy'(Bx) = {f e H*(Bx) : f(0) =0}.

Corollary 2.5. Let X be a complex Banach space. Then Lo, is isomorphic to a subspace of
Hy (Bx)\HL(Bx) v {0}.

Proof. We fix xy € X such that |xo| = 1 and consider z* € X* such that z*(x¢) = 1 = |z*|.
We define

U: H*(D) — H*(Bx)
by U(f) = fouz* for f € H®(D). Clearly ¥ is a well-defined linear mapping and since
x*(Bx) = D we have that ¥ is an isometry onto its image. Moreover, considering the restriction
of ¥ to HL(D) we are going to have

U: HL(D) — HL(By),

that again is an isometry, now with the Lipschitz norms. Indeed, if f € HL(D) and z,y € Bx
then

() (@) = V()W) < L (x) — 2% (y)| <L) 2|2 =yl = L |z =yl
Thus L(U(f)) < L(f). But if A\, u € D, then
[f(A) = Fw)] =[f o a*(Azo) — f o 2™ (pao)| = [¥(f)(Azo) — W (f)(po)|
<L(W(f)Azo — pol = LOY(f))IA — wl,
and we get L(f) < L(¥(f)). Finally, due to the injectivity of ¥ (a direct proof is also elementary)
we have that
U(Hy DNHL(D)) = 1 (Bx)\HL(Bx).
Now the claim is a straightforward consequence of Theorem 2.4.
OJ

We finish this section with a counterpart of Corollary 2.5; that is, there is a copy of /., made
up of Lipschitz non-holomorphic functions.
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Proposition 2.6. Let X be a complex Banach space. Then ly is isomorphic to a subspace of
Lipo(Bx)\HLo(Bx) v {0}.

Proof. First we consider the 1-dimensional case X = C. Let [: R — [0, 1] be a C* function such
that [ is strictly increasing on (1/2,1), 0 < l(z) < 1if1/2 <z < 1, () =0 for x < 1/2, [(x) =
forz > 1,1%(1/2) =0 if k > Oandﬂmﬂ)z(kazl.Ddhef:@—»ﬁLﬂasf()-lﬂd)
Con51dered it as being defined on R?, f is C® and df : R> — R is a continuous function. Hence,
by the Mean Value Theorem, f € Lipy(ID). Now we define T': HLy(D) — Lipy(D) as T'(g) = f-g.
We claim that 7" is an isomorphism onto its image. Indeed, given g € HLy(D) and z,u € D,

1F(2)9(2) = f(w)g(u)| < [f(2) = f()llg2)] + [F()llg(z) = g(w)| < 2L(f)L(g)|z — ul
Thus T is a continuous linear mapping with |T'|| < 2L(f). Now we check that 7" is bounded
below. As f(x,y) = l(1/2% + y?) we have that df (z,y) = 0 if 2 = x + iy satisfies |z| > 1. By
continuity on a compact set, given ¢ > 0 there exists 0 < r < 1 such that if |z| = r, then both
|df (z,y)| < e and f(z) > 1 —e. Thus, for g € HLy(D),

L(fg) = [d(f9)|o = lgdf + f9'lo = | f9 lpvo — lgloldf loyn = 19 lown — L(g)e.
But, by the maximum modulus theorem

1f9'[pvvn = (L= 2)lg oy = (1 =€) lb = (1 =€) L(g).
and we get L(fg) = (1 — 2¢)L(g), for every € > 0. As a consequence

L(Tg) = L(fg) = L(g),
and T is bounded below. Moreover, T(g) = f - g is never holomorphic on D for any g €
HLo(D)\{0}, and T(HLy)(D) is isomorphic to HLy(D) which in turn is isometric to H*(D)
that has a subspace isomorphic to £.

The general case is a straightforward consequence of the above argument in the following
natural way. Let X a non-null complex Banach space and take x* € Sx«. Defining R: Lip,(D) —
Lipy(Bx) by R(h) = hox*, we are going to have that R is an isometry into. Hence, R o
T: HLy(D) — Lipy(Bx) is an isomorphism into its image and we get that {4, is isomorphic to
a subspace of HLo(Bx). But if g € HLy(D)\{0}, then RoT(g) = (f - g)z* is not a Gateaux
holomorphic function since its restriction to {zz : z € D} is not holomorphic. We conclude that
l\{0} < Lipy(Bx)\HLo(Bx). O

3. THE PREDUAL OF THE SPACE OF HOLOMORPHIC LIPSCHITZ FUNCTIONS

In this section, we will show that the space HLy(By) has a canonical predual with very
similar properties to the canonical preduals of H*(Bx) and Lip,(Bx).

Let us denote by 75 the compact-open topology on HLy(Bx). An easy argument using
Montel’s theorem [22, Th. 15.50] shows that FHLO(BX) is To-compact. In fact, on this ball,
convergence in the topology 7y coincides with pointwise convergence. Thus, the Dixmier-Ng
theorem [38] says that HLo(Bx) is a dual space with predual given by

Go(Bx) :={p e HLy(Bx)* : ¢|§HLO(BX) is 79 — continuous}.

For € Bx and f € HLo(Bx), denote 6(x)(f) = f(x). Clearly 6(z): HLy(Bx) — C is
linear and continuous meaning that §(z) € HLo(Bx)*. Also, i(z) is Tp-continuous so

d(z) € Go(Bx).

|§HL0(B>
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Proposition 3.1. Let X be a compler Banach space.

(a) The mapping

0: Bx — gO(BX)
x— ()

is holomorphic and |§(x) — é(y)| = |z —vy| for every x,y € Bx. In particular, 6 €
(b) Go(Bx) =span{d(z) : = € Bx}.
(¢) For any complex Banach space Y and any f € HLy(Bx,Y), there is a unique operator
Ty e L(Go(Bx),Y) such that the following diagram commutes:

Go(Bx)

The map f — T defines an isometric isomorphism from HLo(Bx,Y) onto L(Go(Bx),Y).
These properties characterize Go(Bx) uniquely up to an isometric isomorphism.

(d) A bounded net (fn) < HLo(Bx) is weak-star convergent to a function f € HLy(Bx) if
and only if fo(x) — f(x) for every x € By.

Proof. (a) The map 9§ is weakly holomorphic since for any f € Go(Bx)* = HLo(Bx) we have
that fod = f is holomorphic. Thus, ¢ is holomorphic (see [37, Th. 8.12]). Also, given x,y € By,

we have

l6(z) =d(y)| = sup  [(f,0(x) =d(y))l= sup |f(x) = f(y)] <z —yl,

feBHLo(BX) fEBHLo(BX)
and equality holds since we may take f = z*|p, where |2*| =1 and 2*(z —y) = |z — y]|.

(b) Just observe that for every f € HLo(Bx) = Go(Bx)* we have that f = 0 whenever
flis(z)zeBx) = 0.

(¢) First, note that an interpolation argument shows that the set {§(z) : z € Bx\{0}} is linearly
independent in Go(Bx). Indeed, assume that »;7_, A;d(x;) = 0 for different points x; € Bx\{0}
and \; € C. Let z9 = 0 and Ao = 0. Take z; € Sx» with x};(z; — 2;) = |2; — 74| and define

T (xz ) n n
f(x) = Z] ())‘ Hz;ﬁ] Hfﬂz—l T Then f € HLo(Bx) and 0 = (f, Zj:l Ajb(z;)) = Zj:l |)‘j|2-

Now, given f € HLy(Bx,Y), we define T¢(6(x)) := f(x) for every x € Bx (this is the only
possibility to get a commutative diagram) and extend it linearly to span{d(z) : x € Bx}. Note

that, given u = 2?11 Aio(x;),
Z >\ y S f (IJ)

Z Aif(25)
j=1 J=1
< sup{L(y" o f) : y* € By} |u] = L(f) ul -

Thus, T extends uniquely to an operator Ty € L(Go(B),Y) with |T}| < L(f). Since L(5) =1
and f =Ty o4, indeed we get that |Ty|| = L(f).

|Tyul = = sup [u,y o f)

y*EBy*

= sup
*EBy*
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Moreover, the map f — T is onto since, given any T € L(Gy(Bx),Y), we have that f := T o0
is a holomorphic Lipschitz map with f(0) = 0 and 7" = T7.

The uniqueness of Gy(Bx) follows from the diagram property and the fact that |T%| = L(f).

(d) The ball By Lo(Bx) 18 To-compact and the weak-star topology is coarser than 7y, so they
coincide on Byry(y)- O

Proposition 3.2. For every complex Banach space X we have that X 1is isometric to a
1-complemented subspace of Go(Bx).

Proof. In the particular case of f = Id: Bx — X, differentiating the diagram in Proposition 3.1
and using that d(Id)(z) = Id for all x € By, we obtain another commutative diagram where all
the arrows are linear:

x4 x

d5(0) L 4

Go(Bx)

Moreover, dd(0) is an isometry. Indeed, given x € X and f € HLy(Bx) we have

.as(0)(w)y = timp, OO i IOV _ )
and so

[d6(0) ()] = supf|df (0)(x)[ : f € Burysn)} < [l
In addition, if we take f = x*|g, then {f,d§(0)(z)) = z*(z), so |do(0)(z)| = |z| for every
reX.
Finally, let P = d(0) o Tr4. Then, using that Trq 0 d5(0) = Id, we have
P? = d5(0) o Tyq 0 d5(0) o Trg = d6(0) o Tyq = P,

so P is a norm-one projection from Go(Bx) onto dd(0)(X). O

Note that this result also holds for G*(Bx) [35] but not in general for F(Bx). In [29] it is
proved that this is true for X separable although for nonseparable X it could even occur that
F(Byx) does not contain a subspace isomorphic to X. Another useful property of Lipschitz-free
spaces is the fact that they contain a complemented copy of ¢; [20], the same holds for Gy(Bx).

Proposition 3.3. Let X be a complex Banach space. Then there is a complemented subspace
of Go(Bx) isomorphic to {;.

Proof. {4, is isomorphic to a subspace of H*(D). Since H*(D) is isometric to HLy(D), which
is a complemented subspace in HLg(Bx), the same holds for HL(Bx). It is a classical result
(see [13, Th. 4]) that this implies its predual Go(Bx) contains a complemented copy of ¢;. O

Next, we want to describe the closed unit ball of Go(Bx). For that, we introduce some more
notation. We denote by conv the convex hull of a set and by I' the absolute convex hull of
a set. As usual in the Lipschitz world, for every z,y € Bx with z # y, m,, stands for the

elementary molecule %:z('y). Also, for every z € By, y € X and f € HLo(Bx), we denote

exy(f) :=df (z)(y). Then e, , € Go(Bx) with || = |y|. Indeed, it is clear that
leayl = sup{ldf () ()| : f € Buross)} < suptlldf(2)] : f € Burosao} Iyl < lyl-
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Conversely, take z* € X* with 2*(y) = |y|| and ||2*]| = 1. Then 2*|p, € HLo(Bx) and
exy(®*|By) = *(y) = |ly|. This shows that e, , belongs to HLy(Bx)* and the equality of norms.
Finally, by a simple application of a Cauchy’s integral formula we derive that the restriction of
€y y 1O EHLO(BX) is Tp-continuous and so it belongs to Go(Bx).

Proposition 3.4. Let X be a complex Banach space. Then,

EQO(BX) = f{mw,y : x,y € By, x #y} =convi{e,, : v € Bx,y€ Sx}

Proof. By Proposition 3.1, we have that |m,,| = 1 for every x,y € Bx with = # y. Also,
L(f) = sup{|{f,myy)| : v,y € Bx,x # y}for all f e HLy(Bx).

Thus, {m,, : ,y € Bx,z # y} is l-norming for HLo(Bx). Equivalently, Bgy(sy) = [{ma, :
x,y € By, x # y}. Analogously, we have that

L(f) = |ldf | = sup{[[df ()| : © € Bx} = sup{|{f, exy)| : 2 € Bx,y € Sx}

and 5o Bgy(py) = I'{€sy : © € Bx,y € Sx}. But €y, 4nys = Aewyy + Neay, for every A\,ne C so
actually EgO(BX) = convie,, : v € Bx,y € Sx}. O

As a consequence, the density characters of X and Gy(By) coincide. In particular X is
separable if and only if Gy(By) is separable.

We will now relate Go(Bx ) with the Lipschitz-free space F(Bx) and Mujica’s predual G*(By)
of H*(Bx). Note that each element of F(Bx) can be seen also as an element of Gy(Bx), but
maybe with a different behavior. For instance, consider u given by {u, f) = SC(O 1/2) f(z)dz

for f € Lipy(Bx). Then u # 0 in F(Bx) but {u, f) = 0 for all f € HLy(Bx), so pt = 0 when
considered as an element of Gy(Bx). The next proposition formalizes this situation. We say
that an operator T: X — Y is a quotient operator if T is surjective and |y|| = inf{||z| : Tz = y}
for every y € Y; this implies that X /ker T is isometrically isomorphic to Y.

Proposition 3.5. Let X be a compler Banach space.

(a) The operator
T .F(Bx) — go(Bx)
0(x) = o()
is a quotient operator with kernel HLo(Bx), = {u € F(Bx) : {f,puy =0V f € HLy(Bx)}.
Thus Go(Bx) = F(Bx)/HLo(Bx) 1 isometrically.
(b) The operator
U: G*(Bx)®-X — Go(Bx)
0(1) @y = €ay

is a quotient map with |V| = 1. In addition, the operator U is injective if and only if
X =C.

Proof. (a) First note that the existence of such an operator 7 follows from the linearization
property of Lipschitz-free spaces applied to the 1-Lipschitz map Bx — Go(Bx) given by z — d(x).
Also, 7*: HLo(Bx) — Lipy(Bx) is just the inclusion map since

T f(x) = (rt f, 8(2)) = (f, m(8(x))) = {f,6(x)) = f(x) Vfe HLo(Bx),Vz € By.
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Thus, 7* is an isometry into. It is a standard fact that this implies that 7 is a quotient operator.
Moreover, kerm = 7*(H Lo(Bx)). = HLo(Bx) ..

(b) Consider the into isometry
®: HLo(Bx) — H®(Bx, X*)
f—df
defined after Proposition 2.1. Recall that G*°(Bx)®,X is a predual of £(G®(Bx), X*) ~

H*(Bx, X*) (see e.g. [41]). Thus, if we restrict ®* to this predual we obtain ¥ = ®*|5x 513 v,
note that W(§(z) ® y) = esy € Go(Bx) for all ,y and so ¥(G*(Bx)®:X) < Go(Bx). Then
|¥| = 1 and V¥ is a quotient operator since U* = ® is an into isometry. In the case X = C,
we have indeed that ®: HLy(D) — H*®(D) is an onto isometry, and thus W is also an isometry
from G*(D) onto Go(D). However, W is not injective for X # C since ® is not surjective.

O

Thus, Go(ID) is isometric to G*(D) (which is the unique predual of H*(D) [3]). We have some
immediate consequences.

Corollary 3.6. A function f is an extreme point of FHLO(D) if and only if f' is an extreme
point of EHOO(]D)).
Corollary 3.7. A function f € HLy(D) attains its norm as a functional on Go(D) if and only

if f'e H*®(D) attains its norm as a functional on G*(D).

Let us state one more consequence of Proposition 3.5.
Corollary 3.8. Let X be a complex Banach space and ¢ € Go(Bx).
(a) There are sequences (x,,), (yn) € Bx with x,, # y, and (a,) < ¢ such that

0
n=1

Moreover, || = inf >, |a,| where the infimum is taken over all such representations

of .
(b) There are sequences (x,,) € Bx, (y,) € Sx and (ay,) < 1 such that

0
()0 = Z anewnvyn'
n=1

Moreover, || = inf >, | |a,| where the infimum is taken over all such representations
of ¢.

Proof. Given € > 0, Proposition 3.5 (a) provides an element u € F(Bx) with 7(u) = ¢ and
Im(p)]| < [l + . It is known (see e.g. [2, Lem. 3.3]) that there are points z,,y, € Bx and

(an) < €1 with p=>" | an% and Y7 | Jan| < |p] + & < @] + 2¢ (here 6 denotes the
canonical embedding 6: By — F(By)). Then ¢ = 3% q,m(2n)00n)y 52 om0

[2n—ynl

Item (b) follows similarly using the corresponding property for projective tensor products (see
e.g. [41, Prop. 2.8]) and G*(Bx) [36, Th. 5.1]. O
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Following Mujica’s ideas we study the metric approximation property (MAP) for Gy(Bx).
For that we first prove the following result about approximation of elements in the closed unit
ball of the dual space. We introduce the notation:

e Py(X,Y): The vector space of polynomials from P: X — Y such that P(0) = 0 endowed
with the norm |dP| = L(P|g,).
e Pso(X,Y): The subspace of Py(X,Y) consisting of finite type polynomials.

Proposition 3.9. Let X and Y be complex Banach spaces. Then

70

(a) EHLO(BX,Y) = BPO(X,Y) -
(b) If X has the MAP then Byrysyy) = Bp,oxy) |

Proof. (a) If f € Byrypyy) then f € H°(Bx,Y) and f(0) = 0. Consider the Taylor series
expansion of f at 0: f(z) =>_, P*f(0)(x). As in [35], for each m € N U {0}, we denote

Snf0) = Y PO and o f() = Y Sif(a).
k=0 m+ 15
Since df = ;7 ,dP*f(0) € H*(Bx, L(X,Y)) it follows from [35, Prop. 5.2] that o, f (z) — f()
for all z € By and
ldow f| = lom(df)]| < |ldf]| < 1.

70

This implies that f € Bpyx,y)

For the reverse inclusion, let f € HLo(Bx,Y) and (P,) < Bpy(x,y) such that P,(z) — f(x)
for all z € Bx. Then L(f) <1 andso f€ EHLO(BXy).

(b) If X has the MAP there is a net of finite rank operators (7,) < L£(X, X) such that
T,(r) — x for all z € X and |T,| < 1 for every a. Given P € Bpxy) we have that P o T,
belongs to Bp, ,(xy) (since L(P o T,|py) < 1) and P(T,x) — P(x) for every z. This means
that P e Bp, X’y)m. Finally, an appeal to (a) yields the result. O

Theorem 3.10. X has the MAP if and only if Go(Bx) has the MAP.

Proof. X being isometric to a 1-complemented subspace of Gy(By) it is clear that X has the
MAP when Gy(Bx) has it.

Now, suppose that X has the MAP and consider the mapping J € E’HLO(BX,QO(BX))' By
Proposition 3.9 there exist a net (P.) © Bp, o(x,6y(By)) Such that Py(x) — d(x) for all v € Bx.
Applying a linearization as in Proposition 3.1 we obtain finite rank linear mappings Tp, with
norm bounded by 1, such that the following diagram commutes:

Bx —*> Go(Bx)
|
Go(Byx)

Note that Tp, (6(x)) = P,(x) — d(x) = Id(6(x)). Then, we have that Tp, — Id on
span{d(z) : * € Bx}. Since the net (Tp,) is bounded the same holds for the closure. Hence,
Go(Bx) has the MAP. O
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Note that our arguments cannot be adapted to the case in which X has the BAP since the
approximations of the identity could send the unit ball Bx to a bigger ball.

Question 1. Does Gy(Bx) have the BAP whenever X has the BAP?

The same question for G*(Bx) was posed by Mujica in [35]. As far we know, this question is
still open.

Another consequence of the linearization process shows that functions in H Ly behave similarly
to functions in Lipy(By, By) (that can be isometrically factorized through the free-Lipschitz
spaces F(Bx) and F(By)). Given f € HLy(Bx,Y) with f(Bx) < By we can easily obtain a
commutative diagram:

(6) Bx By

N

Go(Bx) o Go(By),

where T, ¢ is linear and | Ty, o¢|| = L(f).

Remark 3.11. With the same procedure as at the beginning of the section we can produce a
canonical predual G(Bx) of HL(Bx) made up of elements of HL(Bx)* which are 7p-continuous
when restricted to the closed unit ball. The fact that HLo(Bx) is a 1-complemented subspace
of HL(Bx) and that the projection from HL(Bx) onto HLy(Bx) is 7o — 7o continuous allow us
to derive that Gy(Bx) is isometric to a 1-complemented subspace of G(By).

With standard adaptations most of the results of this section can be stated for G(By) instead
of Go(Bx). That is the case of Propositions 3.1, 3.2, 3.9 and Theorem 3.10. The version of
Proposition 3.4 for G(Bx) requires the addition of §(0) to both considered sets. Also note that
the square diagram (6) can be made for G(Bx) but there is no equality between the norms of
Tgyo f and f

4. RELATION BETWEEN Gy(Bx) AND Gy(By) WHEN X C Y

Recall that, given metric spaces M, N with 0 € M < N, the (real) Lipschitz-free space F (M)
canonically identifies with a subspace of F(NN). This follows from the McShane extension
theorem asserting that for every f € Lip,(M,R) there is f € Lipy(N,R) with f|y = f and

L(f) = L(f), see e.g. [42, Th. 1.33]. Note in passing that in the complex-valued case all
extensions can have a larger Lipschitz constant. This is why our next goal is to analyze the
corresponding relation between Gy(Bx) and Gy(By) when X < Y. Then Bx < By and the
restriction mapping has norm one:

HLo(By) — HLo(Bx)
[ flBx-
Then, the following mapping also has norm one:
p: Go(Bx) — Go(By)
p =@,
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where @(f) = o(f|By)-

Whenever p is an isometry, we write Go(By) < Go(By). Then, by the Hahn-Banach theorem,
every element of HLy(Bx) would have a norm preserving extension to HLy(By ). Since there
exist polynomials which cannot be extended to a larger space it is not always true that Go(Bx) <
Go(By). Moreover, the previous argument can be clearly reversed, so: Go(Bx) < Go(By) if and
only if every f € HLy(Bx) has a norm preserving extension to H Lo (By ).

We study some cases where this norm preserving extension occurs. All are cases where we
have an extension morphism. The simplest occurs when X is 1-complemented in Y. Here, the
complementation also spreads to Go(By).

Proposition 4.1. If X is 1-complemented in Y then p is an isometry and Go(Bx) is a 1-
complemented subspace of Go(By).

Proof. Let m: Y — X be a norm-one projection. Given f € HLy(By) the mapping f o7 belongs
to HLo(By) with L(f o) < L(f) and (f om)|s, = f. Now, for each ¢ € Go(Bx),

lel = sup p(N)f = sup  [@(fom)| < o]
f€Byry(Bx) f€BuLy(Bx)
Thus, [¢|| = ||@||, meaning that p is an isometry. Finally, we derive that Gy(By) is 1-

complemented in Gy(By) through the following projection:
Go(By) — Go(Bx)
b [f o (f o)
|

M. Jung has proved recently that G*(Bx) does not have the Radon-Nikodym property (RNP)
for any X [32]. Here we obtain the same result for Go(Bx).

Corollary 4.2. The space Go(Bx) fails to have the Radon-Nikodym Property for every complex
Banach space X.

Proof. The space G*(D) fails to have the RNP since its the unit ball does not have extreme
points [3]. Thus, by the isometry presented in Proposition 3.5, the same holds for Gy(ID). Since
C is 1-complemented in X, Proposition 4.1 yields that Go(ID) is a subspace of Gy(Bx) and we
are done. O

Another situation when we have an extension morphism is when ¥ = X**. Recall that,
given f € H*(By), we can consider its AB extension f € H®(Bxx) [6]. The AB extension,
which defines an isometry from H*(Bx) to H*(Bx=x) [21], is a topic widely developed in the
literature. For instance, it is essential in the description of the spectrum (or maximal ideal
space) of the Banach algebra H*(Bx). Another ingredient that usually appears associated with
the AB extension and its properties is the notion of symmetrically reqular space. Both these
concepts have their origin in the study initiated by Arens [4, 5] about extending the product of
a Banach algebra to its bidual.

For an n-linear mapping A : X x --- x X — Y the canonical extension A X% 5 ox X*F s
Y ** is given by consecutive weak-star convergence in the following way:

Al ) (y*) = lim. . limy*(A(za,, . . ., Ta,))
a1 Qn

rrn
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where each (z,,) € X is a net which is weak-star convergent to z* and y* € Y*. Now, the AB
extension of a homogeneous polynomial P € P("X,Y) is given by P € P("X**, Y**) which is
defined, for x** € X** in the expected way:

~

P(x*) = P(z*, ... ™).

This provides a way to extend bounded holomorphic functions f € H*(Byx,Y) ~ f €
H*(Bx#x, Y**) and we know from [21] that this extension is an isometry: |f| = |||

Recall that X is said to be regular if every continuous bilinear mapping A : X x X — C is
Arens regular. That is, the following two extensions of A to X** x X** — C coincide:

limliénA(:va,yg) and liénlimA(xa,yg),

where (z,) and (ysz) are nets in X converging weak-star to points z3* and y3* in X**. The
space X is symmetrically regqular if the above holds for every continuous symmetric bilinear
form. Equivalently, X is (symmetrically) regular if any continuous (symmetric) linear mapping
T: X — X* is weakly compact. Several equivalent characterizations of this notion can be seen
in [8, Th. 8.3] and some interesting properties appeared in [9, Section 1]. As examples of non
reflexive regular (and hence, symmetrically regular) Banach spaces we have, for instance, those
that satisfy property (V) of Pelczyniski, like ¢y, C'(K) or H*(ID) while typical non symmetrically
regular spaces are ¢; and X @ X*, for any non reflexive space X. Also, Leung [34, Th. 12]
provided an example of a symmetrically regular space that is not regular and in [9] it is showed
that co(¢}) is regular but its bidual £, (¢7}) is not symmetrically regular.

We now want to work with the AB extension for elements in HLo(Bx). For f € HLo(Bx),
in order to compute the Lipschitz constant of f we need to deal with the differential of the
AB extension, df which belongs to H(Bx, X***). Instead, we do know the norm of the AB

extension of the differential df € H®(Bxxx, X***). Fortunately, on symmetrically regular spaces
they coincide:

Proposition 4.3. If X is symmetrically reqular and f € HLo(Bx) then df = c?fj

Proof. It f = Y;7, P*f(0) then the series expansion of df at 0 is given by df = Y.,”_ dP* f(0).
Thus, Zl}/ = > o (dP*f(0)). On the other hand, f= Do ﬂ?(_é) and so df = Do d(PF ( ).

Therefore, the result is proved once we show that for any given m € N and any P € P(™X),

dP = dP. Note that in this case P € P(mX**), dP ¢ P(™ X, X*) while both dP and dP
belong to P(™ X ** X **#),

“Uz<

When X is symmetrically regular, it follows from [8, Th. 8.3] that P =DP. The argument is

(x** ... a* y*)
and dﬁ(l'**)(y**) = m]B(x**, s 7x**7y**)' -

et

now complete because, for each z**, y** € X** we have dP(x Ny*™*) =m

Proposition 4.4. If X is symmetrically reqular then the AB extension mapping
E: HL(](B)() i HL()(B)(**)
f=f

18 an isometry.
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Proof. If f € HLy(Bx) then its norm is glven by ||df||. By [21], ||df]| = ||gf|| Also, by the
previous proposition we know that df = df So, we obtain that |df| = |df], meaning that f
does indeed belong to HLo(Bx=x) and that the mapping f — f is an isometry. 0

In the previous result symmetric regularity is used to obtain that df = zi\f Actually we only
need the identity of their norms: |df|| = |df|. We do not know if this equality holds in general.

Corollary 4.5. If X is symmetrically reqular then Go(Bx) < Go(Bx#+).

Note that in the above corollary the hypothesis of symmetric regularity is not a necessary
condition since, for example, for X = ¢; the result holds due to Proposition 4.1.

A generalization of this procedure (which, however, uses the AB extension in its definition) is
when there exists an isometric extension morphism s: X* — Y*. This happens, for instance,
when X is an M-ideal in Y. More generally, if X < Y then the existence of an isometric
extension morphism s: X* — Y* is equivalent to X** being 1-complemented in Y **.

Note that s(z*)(z) = x*(x) for all z € X, x* € X* and that |[s(z*)| = |«*||. This extension
transfers to H*(Bx) in the following way:

5:H*(Bx) — H™(By)
f— fo s* oy,
where 7y : Y — Y** is the canonical inclusion.

The mapping 5 is an isometric extension from H*(Bx) to H*(Bx#+). Again, to work in
HLy(Bx) we require a symmetrically regular hypothesis.

Proposition 4.6. If X is symmetrically reqular, X <Y and there is an isometric extension
morphism s : X* — Y™ then

1S an isometric extension.

Proof. For any P € P(™X) we have that 5(P) € P(™Y) and d(5(P)) € P(™"'Y,Y™*). Now, for
Y,z € BY7

AGP)()(E) = mEP) (.. ..9.2) = mP (s (i (1), ... 8" (i (1), (i ()

(5
= dP(s*(iy (y) (5" (iv () = (i} 0 5™ 0 dP o 5" 0 iy ) (y) (2)-
This says that d(5(P)) = i* o s** o dP o s* o iy for every polynomial P € P(™X). Then, the
same equality holds for every f € HLy(Bx):
d(5(f)) =it 0™ odf o s* oiy.
Since X is symmetrically regular, by Proposition 4.4 we obtain that |d(5(f))| < |df] = ||df|.

Also, note that for = € By, we have s* o iy(z) = ix(z). This implies that df(s*(iy(z)) =
ix*(df(z)). Therefore,

d(5(f))(x) = iy o s (ixs(df (x))) = s(df (x)).
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This equality and the fact that s is an isometry allow us to derive the other inequality:

ld()] = sup [d(E() (@) = sup [s(df (2))]

LBEBX CEEBX

= sup [df (z)| = [df],

reEBx

which concludes the proof. O

Corollary 4.7. If X s symmetrically reqular, X < Y and there is an isometric extension
morphism s : X* — Y™ then Go(Bx) < Go(By).

4.1. Dual isometric spaces. It is known that there exist non isomorphic Banach spaces with
isomorphic duals. Attending to that, Diaz and Dineen [23] posed the following question: if X
and Y are Banach spaces such that X* and Y* are isomorphic, under which conditions is it true
that P("X) and P("Y) are isomorphic for every n > 17 That is, if X* and Y* are isomorphic
(i. e. the spaces of 1-homogeneous polynomials are isomorphic) does it imply that the spaces of
n-homogeneous polynomials are isomorphic for every n? They also gave a partial answer to
this question. Later, a relaxation of the conditions was obtained by Cabello-Sanchez, Castillo
and Garcfa [15, Th. 1] and Lassalle and Zalduendo [33, Th. 4] independently, proving that the
answer is affirmative whenever X and Y are symmetrically regular. We present here a version of
this result for holomorphic Lipschitz functions on the ball. Since we need to remain inside the
ball when changing the space we have to restrict ourselves to the case of isometric isomorphisms.

Proposition 4.8. If X and Y are symmetrically regular Banach spaces such that X* and Y*
are isometrically isomorphic then HLy(Bx) and HLy(By) are isometrically isomorphic as well.

Proof. Let us denote by s : X* — Y™ the isometric isomorphism and consider the mapping
S:HLy(Bx) — HLo(By) as in Proposition 4.6. By the proof of that proposition we derive that
5 is continuous and || | < 1. Since Y is symmetrically regular, we can use the same procedure
for the mapping s—1 : HLo(By) — HLo(Bx) leading to [s~1|| < 1. Finally, appealing to [33,
Cor. 3] we obtain that s~ 0 5(P) = P for every homogeneous polynomial P on X and, hence,
s7Lo3(f) = f for every f e HLo(Bx). Indeed, if 37"/ P* is the Taylor series expansion of a
given f € HLo(Bx), then f(2) = Y'°  P*(2) for every z € Bxss. Thus

0

5(f)y) = f(s* ZP’f 5(PH)(y

k=0

for every y € Y. From here

sIEN)@) = 35N ((s™) ix () = D 5(PF)((s7Y)* (ix(2))

= Y STIEPY) (@) = Y PE(x) = f(x),

for every x € X. Analogously one can check that so s71(f) = f for every f € HL(By). O

vl

In the previous proposition we can change the hypothesis of X and Y being symmetrically
regular by X or Y being regular. Indeed, it is proved in [33, Rmk. 2] (see also [15, Prop. 1])
that if X* and Y™* are isomorphic and X is regular then so is Y.
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4.2. Mapping between Gy(Bx) and Gy(By). Any linear mapping between X and Y produces
a mapping between Gy(Bx) and Gyo(By) by a canonical procedure (actually, two canonical
procedures depending on the norm of the mapping).

(i) Let ¢: X — Y a linear mapping with [¢| < 1. Note that L(¢)) = ||¢|| in this case. Since
(Bx) < By we can define the canonical mapping with norm < 1:

HLo(By) — HLo(Bx)
f=Ffov.

Thus, the following also has norm < 1:

T5y0¢2 gO(BX) - gO(BY)
P,
where o(f) = ¢(f o ¥).

(ii) When |¢| > 1 the previous construction does not work but we can appeal to a linearization
plus differentiation process (as we used to show that X is a 1-complemented subspace of Go(Bx)).

Let ¢ € L(X,Y) so that 9|, € HLo(Bx,Y). We have the usual commutative diagram:

Y|By

Bx Y

o A

Go(Bx) Go(By)

where Tw S ﬁ(gg(Bx), Y)
Applying the differential at 0 to the equality ¢|p, = T3, 0dx we get the commutative diagram:

Xx—% .y

dox (0) L / L‘MY(O)
»

Go(Bx) —= Go(By).

sy (0)oTy,

Note that the linear mapping ddy (0) o Ty, : Go(Bx) — Go(By) has norm less than or equal to
4]

5. LOCAL COMPLEMENTATION IN THE BIDUAL

In this section, we are interested in the relationship between Gy(Bxx) and Go(Bx)** under
the hypothesis of X** having the MAP, in the spirit of what is done in [16].

We begin with a result about a special approximation behavior in the case that the bidual
space has the MAP.

Proposition 5.1. Let X,Y be Banach spaces such that X** has the MAP. For each f €
HLo(Bxsx,Y) with L(f) = 1 there ezists a net (Qn) < Pro(X,Y) with L(Qalpy) < 1 satisfying
Qo(z**) — f(x**) for all 2** € Bxxx.
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Proof. By Proposition 3.9 it is enough to consider f = P € Py(X**,Y) with L(P|p,,,) = 1.
If X** has the MAP we can appeal to [16, Cor. 1] to obtain a net of finite rank mappings
(ta) © L(X, X**) with ||t < 1and t2*(z**) — 2** for all z** € X**. Now we define Q, = Pot,,
which clearly belongs to Py o(X,Y). Note that, for any z,y € By,

|Qa(2) = Qa(W)] = | P(ta(z)) = Pta(y))| < L(Plsyws talllz =yl < |2 —y].
Then, L(Qu|sy) < 1. Since t, is a finite rank mapping, we have that ¢2* € L(X**, X**). Hence,
Qo = Pot® = Pot*. As a consequence, Q(z**) = P(t2*(z**)) — P(2**) for all 2** € Bxsx.
0]

For a symmetrically regular space X, we consider the following mapping
@ . Bx** ad go(BX)** = HL()(B)()*

o™ [f € HLo(Bx) — f(z*")].
Proposition 5.2. If X is symmetrically reqular then © belongs to HLo(Bxsx,Go(Bx)**) with
L(®) =1.

Proof. If X is symmetrically regular, by Proposition 4.4, the AB extension is an isometry from
HLo(Byx) into HLo(Bxxx), so © is well defined. For any f € HLy(Bx), we have O(-)(f) = f,
meaning that © is weak-star holomorphic and thus, it is holomorphic. Also, ©(0) = 0 and for
any x**, y** € Bx=x, once again by the symmetric regularity of X we have

~ ~

[©@*) —=0@™)| = sup  [f(=") = fFly™)] < [« —y™].

f€Bury(Bx)

This means that © € HLo(Bx#x, Go(Bx)**) with L(©) < 1. On the other hand,
[©(™) —0y™)| = sup [2™(2%) —y™(@7)] = |2 —y™].

x*GBX*

Therefore, L(O) = 1. O

As a consequence of the previous proposition, if X is symmetrically regular we can linearize
the mapping ©:

©
Bx**

Go(Bx#x)
This produces a linear mapping Te € L(Go(Bx=x), Go(Bx)**) with ||Te| = L(©) = 1.
Motivated by the Principle of Local Reflexivity, Kalton [31] introduced the following definition:

gO(BX)**

Definition 5.3. Given Banach spaces X c Y we say that X is 1-locally complemented in Y
if for every € > 0 and every finite dimensional subspace F' of Y there exist a linear mapping
T:F — X such that |[T|<1+cand T(zx) =x forall ze FF n X.

Note that the Principle of Local Reflexivity says that X is 1-locally complemented in X**,
for any Banach space X.

Theorem 5.4. If X is symmetrically reqular and X** has the MAP then Tg embeds Go(Bxxx )
as a 1-locally complemented subspace of Go(Bx)**. In particular, Tg is an isometry.
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Proof. We know that the mapping dxs+ belongs to HLo(Bx#x,Go(Bxsx)) with L(0x##) =
Thus, we can apply Proposition 5.1 to get a net (Qn) < Pro(X, Go(Bx#x)) with L(Qa|py) <
such that Q(z**) — Jx=x(x**) for all x** € Bys.

Consider the following two commutative diagrams:

Qa‘ @a‘B * ok
By ——2XGo(By+) Bywr ——"Go( Byt )
5Xj Tqa 6X**l /%4
Go(Bx) Go(Bx#x)

Note that, since X is symmetrically regular we have

HTQaH = L(Qoa|BX) = L(@a|BX) = HTNQH < L

For each a, since Tg, is a finite rank operator we have that T¢* belongs to £(Go(Bx)**, Go(Bx»*)).
Thus, we have the following diagram

Te

Go(Bxsx) Go(Bx)**

~ ok
k 4

Go(Bx#x)

The space Go(Bxxx) has the MAP witnessed by the net (Tj_) thanks to (the proof of) The-
orem 3.10. Appealing to [16, Lem. 4], the proof will be completed once we check that the
previous diagram is commutative. For this, it is enough to prove that Ty (dx=(2™)) =
T35 o To(dxxx(x**)) for every x** € Byss.

On the one hand we know that T (dxxx(2**)) = Qo(z**). On the other hand, T5r o
To(dxx=(x**)) = T3 (O©(z**)). To understand this element of Go(Bx=x) let us see how it acts
on any f S HLO(BX**):

(7) I52(0(z™)), f) = ©(=™), 15, (f))-
Now, T¢, (f) belongs to HLo(Bx) and for any x € Bx satisfies
T5, (M) = (T4, (f), 0x (2)) = {f, Tq.(0x ())) = {f, Qa()) = (T © Qa) ().
Then, T} (f) = Ty © Qa- Replacing this equality in (7) and using the definition of © and the
fact that the range of @a is contained in Gy(Bxxx) we derive
(TE(O™)), ) = (Ox™), Ty 0 Qo) = Ty 0 Q, (™) = Tf* 0 Qula™)
= T7(Qu(2*)) = (Qu(z**), f), for all f e HLo(Bxs).

~—

Therefore, T3 (©(2**)) = Qo (2**) and thus T5% 0 To(Oxxs (7)) = Ty, (Oxxx (2**)) for every
x** € Bx=x, which finishes the proof.

OJ
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It is known (see, for instance, [16, Lem. 3] or [31, Th. 3.5]) that X is 1-locally complemented
in Y if and only if X™* is 1-complemented in Y*.

Corollary 5.5. If X is symmetrically reqular and X** has the MAP then HLo(Bxxx) is
isometric to a 1-complemented subspace of HLy(Bx)**

Under the same conditions of the previous results we can also obtained a version for holomor-
phic Lipschitz functions of the following characterization of unique norm preserving extensions
to the bidual proved by Godefroy in [28].

Lemma 5.6. Let X be a Banach space and x* € X* with |z*|| = 1. The following are equivalent:

(i) =* has a unique norm preserving extension to a functional on X**.
(i1) The function Idg , : (Bxs,w*) — (Bxx,w) is continuous at z*.

Aron, Boyd and Choi [7] gave a version of this result for homogeneous polynomials. Later,
other extensions appeared (for instance, in [25] for ideals of homogeneous polynomials and in
[24] for bilinear mappings in operator spaces).

Now, the statement of the theorem in our setting is the following:

Theorem 5.7. Suppose X is symmetrically reqular and X** has the MAP. Consider a function
f e HLy(Bx) with L(f) = 1. Then, the following are equivalent:

(i) f has a unique norm preserving extension to HLo(Bxsx).
(it) The AB extension from (Burysy), w*) 10 (BuLy(Bus) W*) is continuous at f.

(1i1) If the net (fa) < Byro(ny) converges pointwise to f, then (fa) < Baro( y converges

Bysx
pointwise to f

Proof. (i) = (ii) Let (f,) < EHLO(BX be a net weak-star convergent to a function f € FHLO(BX)
By the weak-star compactness of the ball By, Lo(Bys«) there is a subnet ( fg) weak-star convergent

to a function g € BHLO(Bx**) Since for each z € By, fo(z) = fa(z) — f(z) we derive that
glex = f. Also, since L(g) < 1 = L(f), it follows that L(g) = L(f), which means that g is

a norm preserving extension of f. By (i) and Proposmon 4.4 we obtain that g = f Now, a
standard subnet argument shows that the whole net ( fa) must converge weak-star to f

(1) = (i13) It is clear due to Proposition 3.1 (d).

(i1i) = (i) Let g € Byro(p,xs) be @ norm preserving extension of f. By Proposition 5.1 there
is a net (Qa) < Pro(X,Y) with L(Qa|p,) < 1 satisfying Qq(2**) — g(z**) for all 2** € Bys.
But for any x € By we have Q,(r) = Qu(x) — g(x) = f(x). Now, (iii) clearly implies that
g=f. OJ

All the numbered results of Sections 4 and 5 have easily adapted analogous versions for G
and HL instead of Gy and HL,.

5.1. The case of H*(Bx) and G*(Bx). The arguments of this section can be canonically
translated to prove analogous results for the case of G instead of Gy (and H™ instead of HLy).
Moreover, for this case the hypothesis of symmetrical regularity is unnecessary. Let us state the
results without proofs, since they are similar to the previous arguments.



LINEARIZATION OF HOLOMORPHIC LIPSCHITZ FUNCTIONS 25

Theorem 5.8. If X** has the MAP then G*(Bxxx) is isometric to a I1-locally complemented
subspace of G*(Bx)** and H*(Bxx=x) is isometric to a 1-complemented subspace of H*(Bx)**.

The following question is posed in [16]: when X** has the BAP, is it true that H®(Bx=x) is
isomorphic to a complemented subspace of H*(Bx)**? Note that the previous theorem answers
affirmatively this open question for the case X** having MAP.

Theorem 5.9. Suppose X** has the MAP. Consider a function f € H*(Bx) with |f]| = 1.
Then, the following are equivalent:

(i) f has a unique norm preserving extension to H*(Bxss).
(i) The AB extension from (B (py), w*) to (By»(Bysw), w*) is continuous at f.
(iti) If the met (fo) © Bu=(py) converges pointwise to f, then (f) © Biye(Byus) CONVETGES

~

pointwise to f.
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