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Introduction

As biological sciences become increasingly quantitative, there is a realization
that mathematical sciences can play a central role in organizing fundamental
ideas and provide a framework for analysis and understanding of key phe-
nomena. In particular, in the last decade, biologists have become increas-
ingly interested in various mechanical aspects of biological systems from the
genetic to the organismal level. For instance, it has been acknowledged that
biological growth and development has an important mechanical component
that plays a role in both genetic programming as well as the regulation of
physiological processes such as heart and arteries remodelling. However, a
unified theory of the growth of elastic tissues that addresses the fundamen-
tal coupling between geometric quantities and physical and chemical fields is
still lacking. A proper formulation relies on various branches of mathemat-
ics and mechanics (differential geometry, thermodynamics, non-linear elas-
ticity) and the analysis of key problems uses the most advanced techniques
in non-linear analysis, dynamical systems, and computational mathematics.
These issues in the mathematical formulation of biological problems arise in
many different fields and represent a truly multi-disciplinar endeavour for
which mathematics has a unique window of opportunity to play an central
organizing role.

Over the last two years, there has been a number of meetings on as-
pects of mechanical biology. Most of these meetings have been organized in
the physics, engineering, or biological community (with the notable excep-
tion of a small meeting at Oberwolfach organized by one of the organizer
in September 2008). What transpires from these meetings is that there are
numerous common fundamental mathematical problems that either need to
be resolved and whose solution need to be brought out to the general sci-
entific community. In particular, there is a new generation of researchers at
the interface between mathematics, mechanics, and biology who is emerging
and defying the traditional discipline boundaries. The choice of participant
lists reflects both the breadth of interest from various scientific communities
and the interest of a new generation of scientists.

Resolved and current challenges

Bulk, surface, and boundary growth in continuum mechanics
framework?

Formulation of a suitable framework for tissue growth has attracted a lot
of attention in the last decade. However, there are different approaches to
this problem and they are, in fact, quite distinct. Because the framework
of continuum mechanics was build for non-growing bodies and thus a clear
and non-evolving reference configuration.



Three types of growth can be distinguished (according to difficulties they
have): volumetric, boundary, and surface growth. Volumetric (or bulk)
growth can be characterized by evolution of mass corresponding to each
material point but without adding any new ones. In this case, the whole
classical theory of continuum mechanics can be applied since a fixed reference
configuration may be used for a body undergoing deformation and growth,
and further the field equations are essentially the same. To have growth in
mass one has to drop the condition of mass conservation and replace it only
with mass balance. This captures the fact that the system is considered
open and that the model describes only some of the involved constituents in
growth, only those who are essential for mechanical response of the tissue.
These additional constituents causing the tissue to grow are assumed to
perfuse freely throughout the body causing growth in the whole volume of
the body. Mathematically, we have a manifold M of material particles on
which we define mass related to material points through its balance equation.
If we have source terms in this relation without condition for conservation
of mass, we may describe the evolution of deforming and growing body by a
homeomorphic mapping that does not change the topology of the considered
body.

Surface or boundary growth are assuming that the body is growing
only from surfaces and thus the newly created matter is concentrated at
these surface (either inside or on the boundary of body). The clear distinc-
tion between surface and volume growth can be found in the classical paper
(Skalak et al., 1982). Boundary growth is a special case of surface growth
which has been recently distinguished and assumes that growth occurs only
on the instantaneous body boundary or its part (Epstein, 2010). In both
growth material is added to or resorbed from the body as growth progresses.
As a consequence, there is nothing like a fixed reference configuration. This
essential problem is related to the very fundamentals of continuum mechan-
ics and has been approached differently in the scientific community. The
most widely used methods are: the reference configuration to evolve during
growth; a new parameter (time elapsed from birth) is added to each material
point; treat the growing body as composition of two bodies (fix the reference
configuration of the original body and introduce new reference configuration
for the “added body” as needed); characterize growth by a residual stress
that it is causing in the current unloaded body. See for example the paper
by Goriely and Ben Amar where the growth in morphoelasticity is modelled
in incremental way (Goriely and Ben Amar, 2007).

However, if we look at a highly localized growth such as tip growth in
root hairs is, the growth occurs in some volume near the tip (keep in mind
the difference in difficulties faced in each case), see Fig. 1.
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Figure 1: Example of quite concentrated growth - tip growth of root hairs
cells (Carol and Dolan, 2002). Is it surface or volumetric growth case?

Multiplicative decomposition

The multiplicative decomposition of the deformation gradient F = Vy into
an elastic part F¢ and a growth tensor F9 (the growth tensor as a represen-
tation for a volumetric growth was developed by Skalak et al. (Skalak et al.,
1982)) proposed by Rodriguez and co-workers (Rodriguez et al., 1994) is the
most widely model used (see Fig. 2).
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Figure 2: Typical consideration in tissue growth with multiplicative decom-
position. Adapted from (Rodriguez et al., 1994)

In growth kinematics, the important issue is to describe the evolution of
the growing body when external loads are removed. The multiplicative de-
composition does not bring any insight into this experimentally inaccessible
configuration. The evolution equation for the growth tensor has to be based
directly on the underlying biological processes which are exactly those, who
are being neglected in the open system consideration. The framework to be



built has to be capable of incorporating these effects - one possibility may
be the usage of mixture theory approach, e.g. (Humphrey and Rajagopal,
2002).

The following simple observation reveals some of the limitations of the
multiplicative decomposition: due to the multiplicative character it is as-
sumed that the displacement at each material point can be decomposed into
two subsequent events - one related to growth and the other to deformation.
And because all the properties of the material at a given material point
are characterized by (averaged) quantities specified only at these material
points, the newly formed material cannot have different material properties
than the original material at the given point (this can be easily followed at
least in the volumetric case). Thus, multiplicative decomposition cannot be
used in the case when the newly formed tissue is deposited with a different
stress than the already existing material, at different velocity or when ageing
of the tissue is of relevance.

Moreover, even when using a detailed mixture theory there still seems
to be need of using multiplicative decomposition to combine the effects of
growth and elastic deformation.

Mixture theory or multiplicative decomposition?

Apart from multiplicative decomposition, mixture theory is the most widely
used approach. It seems to be more natural since growth and remodelling
are a consequence of chemical reactions. And even mechanosensing and
mechanotransduction events involve chemical reactions. Mixture theory is
taking advantage of continuum theory which is used to describe deformation
of each individual constituent and of the mixture as a whole but is also
capable of capturing the chemical reactions among constituents and thus
providing more details about the growth process itself. If one compares it
to the kinematic description using multiplicative decomposition, one finds
that mixture theory is ideally suited for the purposes of modelling growth
of deforming body/tissue when the evolution of separate constituents are
known.

But there are some drawbacks related to this approach. First of all,
mixture theory approach is not really an alternative to multiplicative de-
composition. It only provides more details about the interactions among
constituents and one has to relate growth with tissue response. This is
again done in most cases through multiplicative decomposition. Further,
mixture theory can be developed in very general setting including interface
jump conditions between phases (see for instance (Eringen and Ingram, 1965;
Atkin, 1976; Drew, 1983)), diffusion of constituents relatively to each other,
chemical reactions (e.g the classical paper (Bowen, 1969) or even emergence
of residual stresses (e.g. (Ateshian, 2007; Ambrosi et al., 2010)). However,
to apply this theory to concrete problem always leads to many substantial



assumptions and restrictions that enable to solve the problem numerically,
not mentioning the desire to have analytical solution to compare with some
know results or behaviour. Classical example of constrained mixture theory
is (Rao et al., 2003) and probably the most complex application (at least
that we are aware of) of mixture theory of non-reacting species to concrete
problem can be found in (O’Dea et al., 2010). Next, the classical problem
with mixture theory is the definition of relevant boundary conditions for a
given problem. Usually, we do not usually have a detailed knowledge of the
problem and interactions among substances that would instruct us how to
describe boundary conditions for each constituent, for example how should
be the external load distributed among constituents? The notion of partial
pressures is not of much help in this regard.

Revising classical mixture theory? However, classical mixture theory
which is based on rational thermodynamics may need revision. Here, we
follow some notes from two papers on this topic by Hansen and his co-
workers (Hansen et al., 1991; Hansen, 1989) which for some reason did not
attract much attention. In his first paper, Hansen points out that he used
weighting of individual constituent contributions to obtain mixture variables
is of crucial importance and should not be based on mass fraction in general.
He proposes a correction called volume fraction mizture theory (especially for
definition of mixture velocity) which is physically more appealing and shows
on an example of simple two-phase mixture which can be analytically solved
that the re-examined theory provides correct results whereas the classical
one fails (Hansen, 1989). In the second paper, Hansen summarizes the
principles of mixture theory as put forth by Truesdell (Hansen et al., 1991):

1. All properties of the mixture must be mathematical consequences of
the properties of the constituents.

2. So as to describe the motion of a constituent, we may virtually isolate
it from the rest of the mixture, provided we allow properly for the
actions of other constituents upon it.

3. The motion of the mixture is governed by the same equations as a
single body.

Of particular interest is the third principle as it leads to fundamentally
different restrictions for the supply terms in governing equations representing
constituent interactions. They revise this principle: “... the summed balance
equations are not required to reduce to those of a single continuum”. This
point of view is adopted on the grounds that mixture theory represents a
generalization to the mechanics of a continuous medium. Hence, there is
no reason to force the governing equations for a diffusing mixture to be
the same as those governing a single continuum. Rather the field equations



for a continuum should represent a special case of the mixture relations.”.
Moreover, they compared both theories with results from the kinetic theory
of gas mixtures where the volume fraction theory is consistent with it while
the classical theory is not.

This clearly suggest that behaviour of the mixture is governed only by
summing the behaviour of each of its constituent without imposing any
constraints on this summation. But what really is the importance of used
weighting? And is there any need for definition of mixture variables at all?
This should be subject of further research, i.e. comparing these two mixture
theories (and probably some others as well, e.g. multiphase flow models) on
some example of tissue growth to demonstrate the importance of the used
approach and if needed proposing some further modifications.

Conclusions and perspectives

From all the above mentioned issues and problems faced when establishing
mathematical foundations for tissue growth we would like to highlight out-
standing issues. The first key challenge is to find a way to derive evolution
equation for growth tensor FY needed in both multiplicative decomposi-
tion or mixture approach. Further, information from mechanosensing and
mechanotransduction should be used to understand the coupling between
mechanical and chemical processes. This last point is essential in order to
derive a consistent framework for tissue growth where this coupling is funda-
mental. Some insight may be gained using thermodynamics, see for example
the work of Kuhl’s group (Goktepe et al., 2010) or for general consideration
about coupling of mechanical and chemical phenomena (Klika, 2010; Klika
and Marsik, 2009). However, postulating phenomenological laws will be
most probably needed in a first step to model the the complexity of biolog-
ical systems.

It is clear that mixture theory allows for more detailed information about
the interactions among constituents, however it remains unclear how one
can exploit the knowledge of concrete interaction terms appearing in the
balance of mass. Even though the process of mass addition and removal
(source terms in mass balance equation) is clearly connected to growth, it
is still not clear how the evolution of the different component relate to the
the evolution of the growth tensor F9.
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