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The algebraic theory of quadratic forms began with the seminal paper
of E. Witt [31] in 1937, where what are now called “Witt’s Theorem” and
the “Witt ring” first appeared. But it was not until a remarkable series of
papers [19] by A.Pfister in the mid-1960s that the theory was transformed
into a significant field in its own right. The period 1965 to 1980 can be
considered the “first phase” of the algebraic theory of quadratic forms and is
well documented in the books of T.-Y.Lam [13] (1973) and W.Scharlau [25]
(1985). Lam’s book itself came at a critical time and greatly influenced the
development and popularity of the field.

In 1981 another phase began with the first use of sophisticated techniques
from outside the field—in this case algebraic geometry—by A.S.Merkurjev,
who proved a long-standing conjecture of A.A.Albert on a presentation for
the exponent two subgroup of the Brauer group. This answered the first
open case of the Milnor conjecture of 1970 [17] on the relationship between
algebraic K-theory, the Brauer group and the Witt ring. As the preeminent
open problem for many years in the algebraic theory of quadratic forms, the
Milnor conjecture exerted a profound influence on the subject. This work was
extended shortly thereafter (1982) in a paper by Merkurjev and A.A.Suslin
[15], showing that when the field F contains the nth roots of unity, the n-
torsion in the Brauer group of F is isomorphic to the algebraic K-group
K2(F )/nK2(F ).

During this time, quadratic form theory also widened its involvement
with other areas of mathematics. T.A.Springer’s use of Galois cohomology
in 1959 [26] in recasting some of the classical invariants of quadratic forms
in terms of the Galois cohomology of the orthogonal group was one of the
first applications of Galois cohomology in algebraic groups, following A.Weil’s
classification of algebraic groups of classical type. And the strong approxima-
tion theorem of M.Kneser [10] for orthogonal groups led to a generalization

1



of that theorem in the theory of semisimple algebraic groups. Siegel’s work
[24] on the representations of one quadratic form by another led to the use
of adèles in algebraic groups by T.Tamagawa [28], in particular to the notion
of Tamagawa numbers in this wider context.

This relationship of Galois cohomology and algebraic groups to quadratic
form theory continues to grow in importance as this workshop has strik-
ingly demonstrated. These fields have become increasingly sophisticated in
recent years, mainly through further incursions by algebraic geometry and,
in particular, by motivic methods. Voevodsky’s work, for which he received
the Fields Medal in 2002 [7], has been very influential, not least because of
his complete (positive) solution of Milnor’s Conjecture. A highlight of our
workshop was his proof of the final link in the confirmation of the Bloch-
Kato Conjecture, which can be viewed as the most general form of Milnor’s
Conjecture.

Thus the primary emphasis in the meeting dealt with the impact of mo-
tivic methods on the subjects of the workshop. Many new and startling
results in the algebraic theory of quadratic forms have been proved by these
methods. There were as well many interesting and very important talks on a
variety of other topics which do not fit within a coherent group or groupings.

Therefore we begin this report with a description of the talks on motivic
methods, followed by a section on “miscellaneous” results.

Motivic Methods

V. Voevodsky. In the late nineties V. Voevodsky developed an algebraic
homotopy theory in algebraic geometry similar to that in algebraic topology.
He defined the (stable) motivic homotopy category and certain spectra that
give rise to interesting cohomology theories such as motivic cohomology, K-
theory and algebraic cobordism. Note that before the work of Voevodsky,
the only comprehensive cohomology theory available in algebra was the al-
gebraic K-theory (defined by D. Quillen by means of algebraic topology).
In the eighties, A. Beilinson [3] and S. Lichtenbaum [14] predicted the ex-
istence of motivic cohomology and conjectured relationships between it and
étale motivic cohomology theories. This conjecture (known as the Beilinson-
Lichtenbaum Conjecture) has been one of the central conjectures in algebraic
geometry. A particular case of the Beilinson-Lichtenbaum Conjecture, the
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Bloch-Kato Conjecture [4], asserts that the norm residue homomorphism

Kn(F )/pKn(F ) → Hn
ét
(F, µ⊗n

p )

is an isomorphism for every field F , positive integer n and prime p 6= char F .
But A. Suslin and V. Voevodsky [27] proved that in fact the Bloch-Kato
Conjecture is equivalent to the Beilinson-Lichtenbaum Conjecture.

The Bloch-Kato Conjecture has its origins in Milnor’s Conjecture, which
is the case of p = 2. As mentioned earlier in the introduction, the first steps
in the proof of that special case were made in a paper of Merkurjev who
verified it for n = 2, and then shortly thereafter, Merkurjev and Suslin gave
a proof the general case of n = 2, and then a few years ago, V. Voevodsky
provided a proof for the general case of Milnor’s Conjecture.

The highlight of this workshop was the announcement by Voevodsky in
his conference talk of a full solution of the Bloch-Kato Conjecture [30]. Thus,
the Beilinson-Lichtenbaum Conjecture is now proven in full generality!

Ph. Gille. Another look at the Bloch-Kato Conjecture was given by Ph. Gille
in his talk. He considered an “elementary” approach involving Severi-Brauer
varieties instead of general splitting varieties, and Tate’s continuous Galois
cohomology instead of motivic cohomology. Gille gave an equivalent refor-
mulation of the Bloch-Kato Conjecture in this setting.

A. Vishik. There has been striking progress in the algebraic theory of
quadratic forms since Voevodsky introduced his motivic methods. In par-
ticular the long-standing problem on the relation between Milnor’s K-theory
and the graded Witt ring was solved by D. Orlov, A. Vishik and V. Voevod-
sky [18]. More precisely, they proved that the canonical homomorphism

Kn/2Kn(F ) → InF/In+1F,

where IF is the fundamental ideal of the Witt ring of a field F , is an iso-
morphism. Another important conjecture on the description of the first Witt
index of quadratic forms has been solved by N. Karpenko. In the proof he
used the algebraic Steenrod operations invented by Voevodsky and described
(on the Chow groups of algebraic varieties) by P. Brosnan. In his talk Vishik
discussed other operations that arise on the level of the cobordism groups
of algebraic varieties. He is now using these operations in an attempt to
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describe the so-called generic discrete invariant of quadratic forms. This in-
variant includes all discrete invariants such as splitting patterns of quadratic
forms and dimensions of quadratic forms in InF .

N. Karpenko. Karpenko announced a solution of the following problem: If
q is an anisotropic quadratic form in In of dimension less than 2n+1, then

dim q = 2n + 2n−1 + 2n−2 + . . . + 2k

for some k = 1, 2, . . . , n. In the proof he uses the whole spectrum of mod-
ern “elementary” techniques—the Steenrod operations of P. Brosnan and the
motivic decomposition of quadratic forms in the category of Chow motives
(developed in works of A.Vishik [29]). A solution of this problem had been
announced earlier by Vishik, who used different and more involved tech-
niques.

P. Brosnan. Brosnan presented an alternative “elementary” proof of Rost’s
Nilpotence Theorem [22]:

Let X be a projective quadric over a field F , with motive M(XF ) in the

category of Chow motives. Then for every field extension L/F the kernel of

the canonical ring homomorphism

End M(XF ) → End M(XL)

consists of nilpotent elements.
The Nilpotence Theorem is an essential ingredient of the basis of the

motivic theory of quadratic forms. Brosnan’s proof avoids the use theory of
cyclic modules involved in the original proof of M. Rost.

V. Chernousov. Chernousov reported on the generalization of Rost’s Nilpo-
tence Theorem to the whole class of projective homogeneous varieties. The
main ingredient of the proof is a motivic decomposition of isotropic projec-
tive homogeneous varieties into a direct sum of motives of twisted anisotropic
projective homogeneous varieties.

F. Morel. Morel discussed the construction and computation of stable coho-
mology operations in the cohomology theory on simplicial smooth schemes
X given by H∗

Nis(X ; k∗), the Nisnevich cohomology of X with coefficients
in the unramified mod ` Milnor K-theory sheaves k∗ (where ` is a prime
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different from char k). He showed how the Bloch-Kato conjecture at ` pre-
dicts the structure of the algebra of all stable cohomology operations and
that conversely, the knowledge of that algebra almost implies formally the
Bloch-Kato conjecture. This explains the difficulty of computing that alge-
bra, as opposed to the computation of the Steenrod algebra in mod `-motivic
cohomology which is “easy” by comparison.

He also explained how just the existence of some operations have non-
trivial consequences for Milnor K-theory; for example in the case ` = 2 the
existence of the operation Sq2 is “close” to proving the Milnor conjecture on
quadratic forms, and an example of the construction of an explicit “extended
power operation”, which might prove useful in this regard, was given.

Miscellaneous Talks

J. Arason, B. Jacob. The study of quadratic forms over fields in charac-
teristic two has a different flavor than that in other characteristics. Results
are also often different. One outstanding example has been the computation
of the Witt group of quadratic forms over a rational function field when the
base field has characteristic two. Two talks were given on this topic, each
independently solving this problem. The basis of such a computation is the
local case.

Arason provided a presentation for the Witt group in characteristic two
and used careful computations among the generators and relations to de-
termine the Witt group of a Laurent series field. He then showed how to
determine the Witt group of a rational function field (in one variable) over
a field of characteristic two as a corollary.

Jacob, in collaboration with R. Aravire, also determined the local case and
hence the rational function field case. They also obtained a reciprocity law,
at least if the base field is perfect (a condition they are currently attempting
to remove).

P. Balmer. Balmer lectured on his joint work with R. Preeti on odd indexed
Witt groups of semi-local rings. The setting is an appropriate triangulated
category with duality [2] and arose from studies in L-theory ([20], [16]). This
category has nice cohomological and topological properties and agrees with
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M. Knebusch’s Witt groups on an algebraic variety [9] and M. Karoubi’s
Witt group of an exact category with duality [8]. The main study is that
of the odd indexed components W 2i+1 of the total Witt group over (not
necessarily commutative) local and semi-local rings. The factors in the total
Witt group have periodicity four. In the general case, Witt cancellation does
not hold, and it is conjectured that the odd indexed Witt groups encode
information about this failure of Witt cancellation when the ring has an
involution. For example, over commutative semi-local rings with involution
the identity, cancellation holds and these odd indexed groups are indeed
trivial. Balmer and Preeti also determine a decomposition of the odd Witt
groups over semi-simple rings with involution, which depends only on the
simple factors with involutions of the first kind. They then relate the third
Witt group with maximal ideals in the commutative semi-local case. In
particular, they show that if R is semi-local and commutative, W 1 = 0 and
W 3 = (Z/2Z)m where m is a computable integer bounded by the number of
maximal ideals in R.

G. Berhuy. A most interesting and natural invariant called the essential

dimension introduced by Z. Reichstein [21] measures the number of param-
eters needed to describe a given structure up to isomorphism. For example,
to describe all quadratic forms of rank n over a field one needs at least n
parameters, and n is in fact needed in general. Such definitive answers are
rare, but upper and lower bounds have been determined in several interesting
cases. In his talk, Berhuy presented his work with G. Favi on cubics over a
field, sketching a proof that the essential dimension for the set of cubics in
three variables is precisely three (assuming the field contains a cube root of
unity and has characteristic not two or three).

S. Gille. One of the primary computations in quadratic form theory is
that of the Witt ring of a Laurent series ring, based on work of M. Karoubi
and A. Ranicki using L-theory. Geometrically, this can be viewed as the
Witt ring of the product of an affine scheme and a punctured affine line.
Gille and P. Balmer generalized this result by computing the total Witt
ring of the product of a regular finite dimensional scheme with a union of
punctured affine spaces (when two is a unit). The usual methodology of
reducing to the affine case and the localization sequence is followed by using
Koszul complexes instead of coherent Witt theory. This allows globalization
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of a certain key element of the theorem whose construction they show to be
independent of the constructions introduced in the proof. As an application
they apply the theorem to an affine hyperbolic space over a regular ring,
retrieving a theorem of Karoubi in the case of a field.

D. Hoffmann. Hoffmann presented his work on an algebraic introduction
to p-forms. This study mimics known quadratic form theoretic techniques
applied to the case that F is a field of positive characteristic p and a p-form
is an additive form on a finite dimensional vector space where scalars pull
out to the pth power, in other words a1X

p
1 + a2X

p
2 + · · · + anXp

n . Because
of the binomial theorem, many of the analogues of quadratic form theory—
such as Pfister forms, the Cassels-Pfister theorem, the subform theorem, the
Knebusch-Norm theorem—follow. The main reason for this is the fact that
the coefficients a1, a2, . . . , an generate a field over F p reflecting important
properties of the form.

M. Knus. A classical result of Hurwitz gives the complete list of quadratic
composition algebras with identity over a given field F : the field itself,
quadratic extensions, quaternions or octonions over F . Thus such a com-
position is only possible in dimension 1, 2, 4 or 8. Rost gave a purely tensor
categorical proof of this result about the possible dimensions by considering
the vector algebra of pure elements inside such a composition algebra. The
universal tensorial object associated with a vector algebra can be interpreted
as a category of graphs and graph manipulations lead to the equation

d(d − 1)(d − 3)(d − 7) = 0

for the dimension d, which occurs as a numerical invariant of the category. A
complete list of cubic compositions was given by Schafer, using structure the-
ory. According to Rost, graph theoretical computations can also be applied
to such compositions: the pure elements (i.e. the elements orthogonal to 1)
admit the structure of a “symmetric” composition. Two numerical invariants
d and e can be attached to the graph category of a symmetric composition;
d is the dimension and e is associated to a “Casimir” element. The possible
values are (d, e) = (0, 0), (1, 1), (2, 0), (4, 4), (8, 0) and (8, 36). This gives
the possible dimensions 1, 2, 3, 5 and (twice) 9 for the cubic composition.
Simple exceptional Jordan algebras of dimension 27 satisfy a generalized no-
tion of cubic composition. In a dissertation in progress (L. Cadorin), a graph
theoretical approach is developed to include the case of exceptional Jordan
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algebras (type D4).

D. Lewis. Lewis presented his joint work with T. Unger and J. van Geel on
the Hasse Principle for Hermitian forms over a quaternion algebra (with the
standard involution) over a number field. The Hasse Principle is known to fail
in the case of skew hermitian forms. It was unknown whether the Principle
fails if weakened by replacing equivalence by similarity (when the form is of
odd dimension). Lewis, Unger, and van Geel prove this also fails. In fact they
show that there exist locally equivalent forms which are not globally similar.
The proof involves defining an invariant (equivalent to Bartle’s invariant)
that can detect such a counterexample.

Discussion afterwards indicated this yields a explicit computation for the
Tate-Šafarevič group for the projective unitary group.

R. Parimala. The determination of conditions under which a quasi-projective
variety having a zero cycle of degree one has a rational point is a problem of
long standing. This is, of course, true for conics and elliptic curves. It is clear
that certain restrictions should be assumed. The most reasonable varieties
to consider, where a positive answer may occur, are homogeneous spaces of
a connected linear algebraic group. The answer is known to be positive for
torsors of some groups by work of E. Bayer and H.W. Lenstra Jr., M. Rost,
V. Chernousov, and S. Garibaldi, and over number fields by the work of J.
–J. Sansuc. Parimala discussed this problem and indicated a possible way to
construct a counterexample for the non-projective case over a Laurent series
field over a p-adic field.

This led to much discussion after the lecture as to whether this approach
would produce such a counterexample. It was determined that it could not
without modification.

A. Pfister. As many of the talks demonstrated, new and sophisticated
methodologies are developing to attack problems in quadratic form theory.
The question always arises of whether one can obtain some of the results by
more elementary means. For example, Karpenko simplified some of Vishik’s
proofs and talked about this at the conference. One of the first results one
proves in quadratic form theory is to determine when an element is a norm
from a quadratic extension. Although the usual proof of this is not deep,
Pfister presented a proof that is completely elementary, and independent of
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the Brauer group or cohomology. The motivation for doing this is to enable
Merkurjev’s theorem in Milnor K-theory to be presented in an introductory
course in quadratic forms.

Z. Reichstein. Reichstein lectured on his joint work with N. Lemire and V.
Popov on Cayley groups. The exponential map is a crucial tool in studying
Lie groups, but suffers from the fact that it is not algebraic. One would
like to find an algebraic analogue even in the case of characteristic zero. By
analogy with the classical Cayley map for the orthogonal group, a natural
candidate would be the following: Let G be an algebraic group over a field
k. Does there exist a G-equivariant birational isomorphism Lie G 99K G?
If such a birational map exists, call G a Cayley group. Suppose that k is
algebraically closed of characteristic zero. Luna asked in 1980 which G are
Cayley? For such a field k, Reichstein determines which simple groups are
Cayley and also which are stably Cayley, i.e., G× (k∗)n is Cayley for some n.

M. Rost. Morley’s Theorem states that the (appropriately chosen) three
points of intersection of trisectors of the angles of a triangle form an equilat-
eral triangle. (cf. that the bisectors of angles of a triangle meet in a point.)
All known proofs eventually rest on computation using the Euclidean metric,
the most recent by A. Connes [6]. Rost talked on this theorem and Connes’s
proof. He also indicated how one could formulate it in group cohomology
independent of any Euclidean structure.

D. Saltman. The notion of “trialitarian algebra” was introduced in [11].
The underlying structure is a central simple algebra with an orthogonal in-
volution, of degree 8 over a cubic étale algebra. The trialitarian condition
relates this algebra to its Clifford algebra. M.-A. Knus, R. Parimala and
R. Sridharan constructed a generic trialitarian algebra, defined using the in-
variants of the group T = PG0+

8 o S3 where PG0+
8 is a group of projective

proper similitudes [12]. This theory is parallel to the theory of central simple
algebras but instead of PGLn, T is used. In his lecture, Saltman described
the center of the generic trialitarian algebra as the field of multiplicative in-
variants of the Weyl group ((S2)

3
o S4) o S3. He also constructed analogues

of Azumaya algebras and Brauer factor sets and described trialitarian alge-
bras in terms of Brauer factor sets, in a way similar to the classical Brauer
construction of central simple algebras. In so doing, he defined a new type of
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cocycle attached to a pair of groups H ⊂ G, which he named G−H cocycles,
and which are used to describe their associated Azumaya crossed products.

A. Schultz, J. Swallow. Let K× be the multiplicative group of the field K.
Already in 1947, I.R. Šafarevič in his influential paper on p-extensions [23]
realized that the growth of dimFp

K×/K×p where K runs over the finite Galois
p-extensions of F can yield important information about the Galois group
GF (p) of the maximal p-extension of a field F . In fact Šafarevič was able
to show that if F is a local field not containing a primitive pth root of unity
then GF (p) is a free pro-p-group using information about dimFp

K×/K×p as
above.

In the 1960s D.K. Fadeev and Z.I. Borevič [5] succeeded in classifying
possible Gal(K/F )-modules K×/K×p for cyclic extensions of local fields of
degree pn.

In recent work, Mináč, Schultz and Swallow classified all Galois G(K/F )-
modules K×/K×p for cyclic extensions K/F of degree pn where char F 6= p.
Their description relies upon arithmetical invariants associated with K/F .

This work and other related work have already been used by Mináč and
Swallow for finding conditions for the solution of specific Galois embedding
problems and providing explicit solutions when they exist. They also de-
termined which arithmetic invariants attached to cyclic extensions K/F of
degree p, which are used for the classification of a Galois module K×/K×p,
are actually realizable for a suitable extension K/F .

These investigations are closely related to previous investigations of Galois
modules attached to fields with Galois groups of exponent 2 by A. Adem,
W. Gao, D. Karagueuzian and J. Mináč [1]. These results can also possibly
be useful in determining the Galois G(K/F )-module K∗(K)/pK∗(K) (where
K∗(K) is the Milnor ring of the field K).

Conclusion

During the last decade the revolutionary methods of motivic homotopy
theory have intervened in the algebraic theory of quadratic forms. Many
long-standing conjectures have been solved, as evidenced by this conference.
These new methods affirm that even in a subject as well worked-over as the
algebraic theory of quadratic forms, significant progress on interesting prob-
lems, often in unexpected directions, is still possible, and provide convincing
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evidence of continuing progress in the future. Of course these methods are
producing striking results in many other fields as well, and it may be that
those in quadratic forms will, as they have often done in the past, foreshadow
similar and analogous progress in fields such as algebraic groups and Galois
cohomology.

Nevertheless many important open problems remain in the algebraic the-
ory of quadratic forms—for example, description of the generic discrete in-
variant of a quadratic form—which will be attacked by means of motivic
methods as well as by more traditional techniques.

The conference provided a marvellous venue for exchange of ideas and
the establishment of collaboration. One of the participants told us that he
had never before come away from a conference with so many new ideas for
his research. The BIRS facilities were greatly appreciated by all of us, and
we extend our sincere gratitude to the management and staff of the institute
for enabling us to have an extraordinarily successful conference.
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