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1 Introduction

The standard models used in the statistical mechanics of polymers are combinatorial structures
such as self-avoiding walks, lattice polygons and lattice trees. These systems have been studied by
combinatorial and probabilistic approaches, by numerical methods including Monte Carlo techniques,
and using a variety of techniques from statistical mechanics. There are many challenging open
questions, partly motivated by problems from molecular biology, especially for the more physically
relevant models in low dimensions. These include questions about entanglement complexity of ring
polymers, phase transitions such as polymer adsorption and polymer collapse, and extensions to
random copolymers. In this report, we survey this area and highlight aspects that were discussed
at the BIRS workshop, May 10-15, 2003, as well as important open questions. There are a number
of books [1, 2, 3] and review articles [4, 5] which give useful background information.

2 Polymer Models

Polymer models have attracted serious attention from mathematicians and physicists since the
1950’s. In the simplest case of linear polymer molecules, the polymer consists of a set of identi-
cal monomers attached sequentially. The monomers can be numbered j = 0,1,2,...n and we say
that the polymer has n + 1 monomers or a degree of polymerization of n + 1. If the polymer is
in dilute solution, so that each polymer molecule can be regarded as behaving independently, the
polymer will behave differently depending on the quality of the solvent. If the solvent is good then
the essential features are (i) the flexibility and connectivity of the polymer and (ii) the fact that
monomers take up space to the exclusion of other monomers. This space exclusion is called the ex-
cluded volume effect and it is this phenomenon which makes the problem difficult to model. Random
walk models capture the flexibility and connectivity but do not model the excluded volume effect.
The model which has been used since the 1950’s is a self-avoiding walk on a lattice.

Consider the d-dimensional hypercubic lattice Z? where the vertices are the integer points in R?
and the edges connect pairs of vertices which are unit distance apart. An n-edge self-avoiding walk
on Z%is a set of vertices j = 0,1,2,...n such that vertices j and j 4+ 1 are unit distance apart on
the lattice and all the vertices of the walk are distinct vertices in the lattice. Suppose for example
that d = 2 (ie the square lattice) and, to be definite, let the walk start at the origin. If we write ¢,
for the number of distinct n-edge self-avoiding walks then ¢; = 4, ¢ = 12 and ¢3 = 36. The first



2 POLYMER MODELS 2

interesting question is the number of 4-edge walks, ¢4. We have to consider the number of ways for
the walk to self-intersect at the fourth step. It is easy to see that ¢4 = 3¢z — 8 = 100.

One can construct upper and lower bounds on ¢,, by counting subsets and supersets. If we attach
a coordinate system to the lattice Z? in the obvious way then we see that walks which only add
steps in positive coordinate directions are self-avoiding so ¢, > d". Similarly, if we consider all
walks except those with a step which is an immediate reversal of the previous step, then we have
¢n <2d(2d—1)""1. An early result about the asymptotic behaviour of ¢, is due to Hammersley [6]
who showed that the limit

nIeréo n~tloge, = ler;fo n~llogen, = kg (1)

exists. kg is the connective constant of the lattice Z% The above inequalities imply that log(d) <
kq <log(2d — 1) and it is not too difficult to improve these bounds although the precise value of x4
is not known for any d > 2. (Using non-rigorous numerical methods we know the value of ko very
precisely [7, 8] and we have fairly precise estimates also for d = 3 [9].)

A related question is how quickly the limit is approached. For any d, Hammersley and Welsh
[10] showed that

kg <n tlogen < kg + O(n*1/2) (2)

so that ¢, increases no faster than e®#"+O(/n)  Hara and Slade [11, 12] showed that, for d > 5,
cn = Age®i™(1 4 0(1)) and it is generally believed that a similar result holds for d = 4 but with a
log correction and that, for d = 2, 3,

Cn = AgnT? e (1 4 0(1)). (3)

The critical exponent v, is thought to have the value 43/32 [13, 14] and there is a good numerical
estimate of v [9]. If equation (3) were true, then

lim S = ere, 4)

n—oo  Cp

Equation (4) has up to now only been proved for d > 5 [11, 12]; the best that is known for d = 2, 3,4
is that

lim 42 — e (5)
n—oo C,n
which was proved by Kesten [15] based on a pattern theorem argument. A pattern is any fixed
self-avoiding walk; a specific pattern P is said to occur in another self-avoiding walk w if a translate
of P is a subwalk of w. A proper pattern or Kesten pattern is a pattern which can occur three times
(ie as three distinct subwalks) in at least one long self-avoiding walk. Given a proper pattern P,
Kesten’s pattern theorem says that all but exponentially few sufficiently long self-avoiding walks
contain P with a positive density. More precisely, given P there exists an € > 0 such that
limsupnlogc,(en, P) < kq, (6)
n—oo
where ¢, (en, P) is the number of n-step self-avoiding walks in which the pattern P occurs at most
en times. Kesten’s Pattern Theorem has had many applications beyond the proof of equation (5)
and some of these are discussed later in this report.

For a polymer in dilute solution in a good solvent, a standard assumption for the self-avoiding
walk model is that each n-step walk, starting at the origin, is an equally likely configuration for the
polymer. Then, for example, there is interest in the average metric properties of the polymer and
their dependence on the excluded volume effect. One metric property is the end-to-end distance of a
walk, that is the euclidean distance between the 0’th and the n’th vertex of an n-step walk. Letting
sn, denote the root mean square end-to-end distance over all n-step self-avoiding walks, it is believed
that

sn = Ban"*(1+ 0(1)). (7)
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For n-step random walks on Z%, it is known that the root mean square end-to-end distance equals
n'/2. For d > 5, it is known that equation (7) holds with ¥4 = 1/2 but for d < 4, the best that
is known rigorously is that s, < n. Numerical and other evidence suggests that vo = 3/4 [13, 14],
v3 = 0.588 [16, 17] and v4 = 1/2 with logarithmic corrections. Other measures of the polymer’s size
(in units of length) such as the root mean square radius of gyration are also expected to have the
form given in equation (7) where the amplitude By may be dependent on the particular measure
but the exponent vy is not.
Define the generating function

C(z) = chx". (8)

The series converges for x < z, = e~ *¢ and diverges for £ > x.. The functional form given in (3)
implies that, close to z., the generating function C(z) behaves as

_ A
(wc — ;L-)’Yd ’

C(x) ~ 9)

and this is an example of a scaling function. Given a point y in Z, let ¢, (0,y) be the number of
n-step self-avoiding walks starting at the origin and ending at y. The generating function

G=(0,5) =D ca(0,y)a” (10)

is known as the two point function and x. is also its radius of convergence for any y # 0. Note that
assuming equations (3) and (7) hold implies [1] that

Z ly[>?G+(0,y) ~ const.(z, — x)~ 2474, (11)
y

It was observed numerically [18] that critical exponents such as v and v depend on the dimen-
sionality of the problem but not on the particular lattice being studied, although the connective
constant is a lattice dependent property. This is the idea of universality; certain aspects of the
problem (such as critical exponents) do not depend on microscopic details of the model but change
if parameters such as dimensionality change. In 1972 de Gennes [19] pointed out that self-avoiding
walks are the zero spin space dimension case of a spin model in D spin dimensions and d spatial
dimensions. Critical exponents depend on d and D but not on the lattice being considered. Because
of the connection to spin models C'(z), defined above, is called the susceptibility and + is the suscep-
tibility critical exponent. Off-lattice models are thought to have the same exponents as these lattice
models provided that the forces are repulsive and short-ranged [17, 20]. Similarly, lattice walks with
other forms of short range repulsion, such as neighbour-avoiding walks [21] and spread out walks,
have the same critical exponents. The exponent value v3 = 0.588 has been observed experimentally
in light scattering measurements of the radius of gyration of very long polymers in dilute solution
in good solvents [22].

Based on the assumption of universality, it is also expected that there is a continuum model
which is obtained from an appropriate scaling limit, where the step lengths of an n-step walk on
the lattice are scaled by a function of n ((Bn)~"4, say, for some B) and then n — oo, and that
this model has the same critical exponents as the original lattice model. This assumption combined
with nonrigorous renormalization group techniques and conformal field theory arguments led to
conjectured values for critical exponents such as 4 and vy [13, 14, 17]. For d > 5, Hara and Slade
[11, 12] proved that such a scaled self-avoiding walk converges in distribution to Brownian motion,
i.e. Brownian motion is the scaling limit of self-avoiding walks. For d = 4, it is believed, but not
yet proved, that the scaling limit is also Brownian motion but with a logarithmic scaling correction.
Most recently, for d = 2, Lawler et al [23] proved that if the scaling limit exists for self-avoiding
walks and if it satisfies an appropriate conformal invariance condition, then the scaling limit must be
stochastic Loewner evolution with speed x = 8/3, SLEg,3; SLE, is a family of stochastic processes
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introduced by Schramm [24] that is parametrized by a one-dimensional Brownian motion with speed
k. The critical exponents for SLFEg/3 can be obtained rigorously and the results of Lawler et al [23]
predict the same critical exponents as the conformal field theory arguments. The same critical
exponents had also been predicted using 2D quantum gravity arguments [25]. For this approach,
one considers a polymer model on a random planar graph instead of on a lattice and then Knizhnik
et al's [26] KPZ map is used to predict critical exponents [27]. Evidence from numerical studies is
consistent with all these critical exponent predictions, and hence the evidence is mounting that the
assumptions underlying these predictions for d < 4 must be valid for self-avoiding walk models.

Ring polymers have a particular interest because of their connection to circular DNA molecules.
In three dimensions they can be knotted or linked and we shall return to these phenomena in a later
section. In the same way that self-avoiding walks are a model of linear polymers, ring polymers
can be modelled by self-avoiding polygons. A self-avoiding polygon on the lattice Z¢ is a connected
subgraph of the lattice with all vertices of degree 2. Self-avoiding polygons are counted modulo
translation. Let p,, be the number of self-avoiding polygons with n edges. On the square lattice
(d=2),ps =1, ps =2 and pg = 7. We note that for n even

Z Cn—1 (an) = 2npn (12)
y:lyl=1
It is known [28] that
lim n~!logp, = supn~tlogp, = kq (13)
n—oe n>0

so that the numbers of polygons and self-avoiding walks grow at the same exponential rate. It is
believed that p, ~ const.n® 3e%"™ where o is the heat capacity exponent in the associated spin
model. Self-avoiding walks and polygons are expected to have the same metric exponent v and
hyperscaling connects the exponents a and v by the relation 2 — a = dv [1]. Define the generating
function

P(z) = ana:". (14)

P(z) converges for x < z. and diverges for z > z.. If hyperscaling holds and the conjectured values
for v are correct then a < 1 in all dimensions and P(z) converges at = z. [1].

The value of the connective constant k is not known rigorously for any lattice but there is a
non-rigorous argument [13, 14] for the honeycomb lattice that k = log /2 + v/2. The best estimates
of the connective constant for other lattices come from exact enumeration of walks or polygons and,
in two dimensions, much longer series are available for the numbers of polygons.

There are corresponding lattice models of branched polymers. The two most widely used are
lattice amimals (ie connected subgraphs of the lattice) and lattice trees (lattice animals with no
cycles). If a,, and t,, are the numbers of lattice animals and lattice trees with n vertices (counted
up to translation) then it is known that the limits

lim n~'loga, = log\ (15)
n—o0
and
lim n~'logt, = log Ao (16)
n—oo

exist, and that A\g < . It is believed that a, ~ const.n A" and t,, ~ const.n=%\? and that
6 = 6. Parisi and Sourlas [29] gave arguments for the values of 6 in two and three dimensions and
Brydges and Imbrie [30, 31] have now given a rigorous version of these arguments. For sufficiently
large dimensions, Hara and Slade [32] proved 6y = 5/2 and that v, the radius of gyration exponent
for trees, is 1/4. Also, Derbez and Slade [33] proved that the scaling limit for high dimensional trees
is integrated super-Brownian excursion (ISE).



2 POLYMER MODELS 5

Recently an analogue of Kesten’s pattern theorem has been proved for lattice animals by Madras
[34]. His approach to the proof differs from the approach that applies to the self-avoiding walk case
and his approach can also be applied to obtain a pattern theorem for other lattice clusters such as
lattice trees. One consequence of his theorem is the following ratio limit:

lim 2oL = ) (17)

n—co  Qp

We can also consider connected subgraphs of the lattice with fixed homeomorphism type. For
given d, suppose that the maximum vertex degree of the graph defining the homeomorphism type
7 is less than or equal to 2d. Let g,(7) be the number of embeddings of 7 (lattice subgraphs
homeomorphic to 7) in Z¢ with n edges. Then

lim n~'log gn(7T) = kg (18)

n—oo

independent of 7 [35]. Given any lattice subgraph homeomorphic to 7, each edge of T corresponds
to a path, called a branch, of the lattice subgraph. For the study of polymer networks it is also of
interest to consider §,(7), the number of n-edge embeddings of 7 in Z? with the property that each
branch of the embedding has O(n) edges. In this case one can also prove that

lim n™'log gn(7) = kg (19)
n—00

independent of 7 [36, 37]. Duplantier [38] has predicted the T dependence on the critical exponent
- for §,(7), assuming that g, (1) = Agn’~1lee"(1+ o(1)). Holmes et al [39] have proved Gaussian
behaviour in dimension greater than four for a related model, in which the branches of the embedding
are composed of mutually avoiding spread-out self-avoiding walks.

2.1 Exactly solvable models

From the above discussion it is clear that rigorous results on self-avoiding walks are difficult to obtain
and hence there has been some interest in devising simpler models which are exactly solvable and
can be used to explore phenomena such as universality and the forms of scaling functions. As an
example we shall consider Dyck paths. These are walks on the square lattice where

1. steps are allowed in the (1,1) and (1, —1) directions,
2. the walk starts at the origin and ends on the line y = 0, and

3. no vertex of the walk has negative y-coordinate.

Let the number of Dyck paths with n edges be d,, and define the generating function

D(z) = Z dn2" (20)
n>0
where dy = 1 by convention. By a factorization argument
D(2) =1+ 2°D(2)? (21)
so that
D(z) = 1-vi-42° ";z2_4z2 (22)

from which we see that d,, ~ const. n=3/22". For these walks the connective constant is log2 and
the critical exponent corresponding to 7 is —1/2. In general for such directed models, the value of
the connective constant gives a lower bound on the connective constant for self-avoiding walks but
the exponent tells us nothing about the value of v for self-avoiding walks, although it is reassuring
to see a form similar to that in eqn (3). One can extend this type of analysis to other exactly solved
sets of walks [3, 40]. If the set is larger (ie grows at an exponentially faster rate) then one obtains a
better bound on the connective constant of self-avoiding walks. Another way to extend these models
is by adding energy terms to model adsorption or collapse, as discussed in later sections. We note
also that some progress has been made recently towards understanding why some lattice models are
exactly solvable and others are apparently difficult to solve [41, 42].
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3 Phase Transitions in Polymer Models

For polymers in a poor solvent or interacting with a surface, short range attractive interactions
between monomers or between monomers and surface molecules cannot be ignored. For these sit-
uations the assumption that each polymer configuration is equally likely is not valid. Instead the
standard model is a self-avoiding walk model for which the probability that a particular n-step walk
occurs is now assumed to be a function of temperature and one or more appropriate “local” features
of the self-avoiding walk such as the number of vertices of the walk in the surface, in the case of a
polymer interacting with a surface. These models are called interacting self-avoiding walk models.
For such models, one of the main questions of interest is whether or not a phase transition occurs
for the model, ie whether or not there exists a temperature, T¢, at which the limiting free energy for
the model is non-analytic.

Two interacting self-avoiding walk models have received a great deal of attention, namely, self-
avoiding walk models of the adsorption transition and self-avoiding walk models of the collapse
transition. There are also versions of these models for self-avoiding polygons, lattice trees, lattice
animals, and lattice subgraphs with fixed homeomorphism type. Recently, there has also been much
interest in interacting random copolymer models where there is a random distribution in the polymer
of more than one type of monomer. There are versions of adsorption and collapse models for random
copolymers and in addition there are models of the localization transition. We discuss progress on
the study of these interacting polymer models next.

3.1 Adsorption at a surface

In this case, the typical situation is to consider a polymer in dilute solution where the polymer is
tethered to a surface. It is assumed that there is a short range interaction between the monomers
and the surface. For the self-avoiding walk model of this situation, the surface is represented by
the hyperplane z = 0 in Z¢, where a point in Z? is assumed to have coordinates (,, ...,z). The
main results were obtained by Hammersley et al [43] who investigated two self-avoiding walk models
of adsorption. For the first model, the walk is tethered to the surface and cannot penetrate it. In
this case, ¢} (v), the number of self-avoiding walks in z > 0 , starting at the origin, and with v + 1
vertices in z = 0, is considered. Each walk counted in ¢} (v) is considered to be equally likely and,
more generally, the probability of an n-step walk with v + 1 vertices (or visits) to z = 0 is assumed
to have the form

- 23)
QA (B)
for 8 real and where the normalization term, Q' (3), is given by
QF(B) = ch(v)e™ (24)

and is known as the partition function for the model. The limiting free energy is defined to be
FH(B) = lim ' log Q7 (8), (25)

where the limit has been proved to exist for all § and is a convex nondecreasing function of 3 [43].
Hammersley et al proved further that there exists 8} > 0 for this model such that

FtB) = kg for B < BF
and FT(8) > kq for B > BF (26)

and hence 8 = . is a point of nonanalyticity of F¥(3). Given any f, let (v,(8)) be the expected
number of visits of an n-edge self-avoiding walk to the surface z = 0. Because of the convexity of

FH),
i 0208 _ 4F*(8) @)

n—oo n dg
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and this derivative exists for almost all 8. At each such 8 value for 8 > B}, the derivative is known
to be positive. It is not known, however, if F+(3) is continuously differentiable at 8 = B+. . is
known as the adsorption transition critical point. For f < B, contacts with the surface are not
favoured enough to overcome the loss of entropy that would result from frequent visits to the surface,
while for 8 > B} this no longer holds and the walk is considered adsorbed to the surface since there
is a non-zero fraction of vertices of the walk in the surface.

Hammersley et al [43] also considered a related model in which the surface is penetrable. In this
case the partition function is given by

Qu(B) = 3 env)e?, (28)

where ¢, (v) is the number of n-step self-avoiding walks starting at the origin with v + 1 vertices in
z = 0. The limiting free energy, given by

F(B) = lim n~'log Qn(B), (29)
n—oo
exists and is a convex nondecreasing function of 4 [43]. In this case, there exists 3. > 0 such that

FB) = kg for B <P,
and F(8) > kg for 8 > B, (30)

and it is also known that 8. < B}. For both models, it is believed that at the critical point
lim,, o0 (”"nﬂ = 0, however, this has not been proved. It is also believed, based on numerical
evidence, that 3. = 0.

Exactly solvable, eg partially directed walk and Dyck path, versions of these models have been
investigated. As an example we shall consider the adsorption of Dyck paths. Let d,(v) be the
number of n-edge Dyck paths with v visits to the line y = 0 and define

G(z,2) = Zdn(v)xvzn. (31)
n,v
An equation for G can be obtained by the factorization argument used in section 2.1, giving
G(z,2) =1+ 22°D(2)G(x, 2) (32)
or, equivalently,
G= 2 (33)
C2—z4aV/1— 422

G is singular when the square root is zero (ie when z = 1/2) and when the denominator is zero.
These two branches meet at 2, = 2 which is the location of the adsorption transition in this model.
The model shares some of the broad general features of the self-avoiding walk model of polymer
adsorption but, of course, the two models disagree in detail. Interestingly, there is evidence that
they have the same value (1/2) for the crossover exponent, which describes the shape of the free
energy curve in the adsorbed phase, close to the phase transition. More complicated and interesting
directed walk models can also be solved exactly using a variety of different and complementary
approaches [3, 40].

3.2 The Collapse Transition

Experimental evidence [44] shows that for high molecular weight polymers in dilute solution, either
as the temperature or solvent quality is reduced the polymers go from typically being spread out in
a, coil-like configuration to being compact in a ball-like configuration. This transition occurs over a
short temperature range, providing evidence for the existence of what’s known as the collapse phase
transition. This transition is thought to be driven by a combination of a short range attraction of
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monomers with each other and a short range repulsion between monomers and solvent molecules. For
the standard self-avoiding walk model of this phenomenon, the energy of a configuration is assumed
to be proportional to the number of nearest neighbour contacts of the walk; a nearest neighbour
contact of a self-avoiding walk is defined to be any edge of the lattice which joins two vertices of the
walk but is not an edge of the walk. In this case the partition function of the model is

Qr(8) =) calt)e™ (34)
J4

where ¢, (¢) is defined to be the number of n-step self-avoiding walks starting at the origin with £
nearest neigbour contacts. The limit which defines the limiting free energy for this model,
lim ™" log Qi () = F¥**(5) (33)
n—oo
has been proved to exist for all 8 < 0 [45], however, the standard approach for proving this limit
exists does not work for 3 > 0. It is believed that F%2%(3) exists for all 8 and the numerical

evidence suggests that there exists a critical point, known as the collapse transition critical point or
the 6-point, at § = B25** where F****(f3) is nonanalytic and such that

Bgn*4 for g > B,
Sp = Bgn"g for 8 =05, , (36)
Cynt/d for 8 < B

where it is believed that v§ = 1/2 for all d > 3 and v§ = 4/7. For the corresponding self-avoiding
polygon model, it can be proved that the limiting free energy does exist for all 8 [45], however, the
existence of the collapse transition critical point has not been proved for either the walk or polygon
model. Numerical evidence [45] suggests that the critical point is the same for the self-avoiding walk
and polygon models. For d > 3, it is believed that mean field theory should hold for interacting
self-avoiding walks but this has not been proved. The d = 4 case has been studied by Prellberg and
Owczarek [46] using Monte Carlo methods.

In the lattice animal version of this model, it is useful to introduce a two variable partition
function

Qibanimal (51”32) — Z an(& 5)651E+52s (37)

L,s

where ap, (¢, s) is the number of n-vertex lattice animals having £ nearest neighbour contacts and s
solvent contacts, ie edges in the lattice from a vertex in the animal to a vertex not in the animal.
In this case, one can prove that the corresponding limiting free energy, Fi@mimel  exists and is a
convex function for all 8; and S [47]. Furthermore, by exploiting the connection between lattice
animals and percolation clusters it is possible to prove that there exists at least one critical point
for Fianimal (corresponding to the bond percolation critical point) where a collapse transition is
believed to occur. It is believed that there is a whole curve of collapse transition critical points in
the (81, B2)-plane [47, 48].

While the proof of the existence of a collapse phase transition for self-avoiding walks remains
elusive, there are some exactly solvable models of collapse. Brak et al [49] derived an exact expression
for the generating function G(z,y) = 3_, , en(£)zty™ where e, (¢) is the number of n-step partially
directed walks on the square lattice with £ nearest-neighbour contacts and showed that this implied
that the free energy was non-analytic. There are also other exactly solved models of collapse [50]
and also exactly solved models of self-interacting walks interacting with a surface [40]. Dhar [51]
has also solved a directed animal model of collapse.

3.3 Random Copolymers

Polymers are frequently composed of more than one type of monomer, eg biopolymers such as
proteins are composed of different types of amino acids. In some circumstances local interaction
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properties are dependent on the specific type of monomer involved in the interaction. To investi-
gate the effect this has on phase transitions, there has been much interest in the study of random
copolymers.

For the standard self-avoiding walk model, the relevant situation is when the randomness is
quenched, that is, we assume that the sequence of monomer types making up a linear polymer
is randomly chosen according to a given probability distribution but that once it is chosen the
polymer’s monomer sequence is fixed. In the simplest model there are two types of monomers, A
and B, and the monomer sequence or colouring of a linear polymer composed of n monomers is given
by a sequence x = x1, X2, ----, Xn, Where the y; are independent and identically distributed random
variables equal to A with probability p and B with probability 1 — p. Once chosen x is fixed and
then each configuration of the polymer with the same energy is considered to be equally likely. Thus
for the case of random copolymer adsorption at an impenetrable surface we suppose that only the
A monomers interact with the surface. Given a colouring ¥, the partition function is then given by

QF(BIX) =D ¢t (valx)e™, (38)

where ¢ (va|x) is the number of n-step self-avoiding walks, starting at the origin, confined to z > 0,
with j’th vertex (j > 0) coloured by x;, and with v4 A-vertices in z = 0. Now in order to investigate
the adsorption transition, one is interested in the limiting quenched average free energy

R(B) = lim (n~log Q5 (X)) (39)

where (-) denotes the expected value over all colourings . The limit defining %(5) has been proved to
exist and &(f) is a convex nondecreasing function of 8 [52]. Furthermore there exists a critical point
B = Breat(p) > BF corresponding to an adsorption phase transition for this model and A7¢** > g+
for 0 < p < 1. It has also been proved [52] that the limiting free energy is self-averaging for this
model, that is,

Jim 1~ log Q1 (B0 = A(3) (40)

with probability one and bounds have been obtained on the extent of this self-averaging [53, 54]
for finite values of n. Similar results can be obtained for the case of adsorption at a penetrable
surface. It is also known under mild additional conditions that the energy, the average number of
surface contacts, self-averages but there remain open questions regarding the self-averaging of other
thermodynamic quantities such as the heat capacity [55].

The case of homopolymer adsorption at a penetrable surface can also be generalized to investigate
a phenomenon known as localization at a surface for random copolymers. In this case we suppose
that there is an interface at z = 0 separating two different solvents or two liquid phases. It is
assumed that A monomers interact with the liquid in z > 0, B monomers interact with the liquid in
z < 0, and all monomers (regardless of type) interact equally with the interface z = 0. Experimental
evidence for related systems indicates that in the appropriate temperature regime the polymer is
localized near the surface and intersects it frequently while for other temperatures the polymer is
either found primarily above or below the interface and hence delocalized. Given Y, the relevant
three parameter partition function is now given by

Ql;c(a,ﬂ,rﬂx) = Z cn(/UA,UB’w|X)eaUA+BUB+’Yw’ (41)
VA,VUB,W

where ¢, (v4,vB,w|x) is the number of n-step self-avoiding walks, starting at the origin, with j’th
vertex (j > 0) coloured by x;, and with v4 A-vertices in z > 0, vp B-vertices in z < 0, and w
vertices in z = 0. The limiting quenched average free energy

R, B,7) = Tim (0~ log QU2°(a, 5, 11x)) (42)

has been proved to exist and it is a convex nondecreasing function of a, 8, [56, 57]. Focussing on
p = 1/2 for convenience, for v = 0 there exist two symmetric phase boundaries (one with 8 > « and
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the other with 8 < «) in the (a, 8)-plane that bound the localized phase. The two phase boundaries
intersect at the origin in this case and, for example, if one stays in the half-plane 8 < « there is
a curve of critical points corresponding to a phase transition from the localized phase to the phase
in which the polymer is delocalized into z > 0. Further rigorous results are known regarding the
~ dependence of the phase diagram but many interesting open questions remain. In particular for
a = 8 =0, the model is equivalent to homopolymer adsorption at a penetrable surface so that the
critical value of 7 is 3. which is believed to be zero (but this is not yet proved). For all v > f., the
point (0,0,7) is in the localized phase.

There are no exactly solvable models for localization of a random copolymer at a surface. How-
ever, the first models used to study these phenomena were (bilateral) Dyck path models [58, 59].
Qualitatively the results are the same for the Dyck path models and the self-avoiding walk models,
but it is possible to prove some stronger results in the case of Dyck path models. In particular,
Biskup and den Hollander [59] obtained results about path properties. For the self-avoiding walk
model no corresponding path results are available.

As it is difficult to obtain rigorous results for models of homopolymer collapse, the analysis of
random copolymer collapse is even more difficult and few results have been obtained [60].

4 Random Knotting and Entanglement Complexity

Ring polymers in three dimensions behave like simple closed curves in R® and can be knotted or
linked. Knots and links have been observed in circular DNA molecules and are thought to act as
topological obstructions to cellular processes such as replication.

4.1 Frisch-Wasserman-Delbruck Conjecture

In the 1960s Frisch and Wasserman, and Delbruck, conjectured that sufficiently long ring polymers
would be knotted with high probability. To address this question mathematically we need a model
of a ring polymer, and the first model for which a result of this nature was obtained was a polygon
on the simple cubic lattice Z3. Let p, be the number of n-edge polygons on this lattice and p? be
the number of these that are unknotted. It is known [61] that

lim n™'logp? = K, < k3 (43)

n—oo

so that unknotted polygons are exponentially rare in the set of polygons, for n large. The key
ingredients in the proof of this result are:

(i) There are no “antiknots” - that is, if k is a given knot type and ¢ is the unknot then there does
not exist a knot k' such that k#k' = ¢. This means that a knotted circle cannot be unknotted
by tying a second knot at a different location in the circle.

(i) A knotted ball pair is a 3-ball B® and a 1-ball B!, properly embedded in B® such that the
pair (B2, B') is not homeomorphic to the trivial ball pair (in which B! is a diameter of the
3-ball {z,y, z|z2 + 3? + 22 < 1}). Given a knot type k we can construct an embedding (7) of
an arc (ie a 1-ball) in Z2 such that the union of the dual 3-cells forms a 3-ball and the ball
pair is knotted. Moreover, if the vertices of degree 1 of B! are connected by an arc entirely
outside B®, the resulting simple closed curve has knot type k.

(iii) Using Kesten’s pattern theorem one can proved that the arc 7 occurs at least once on all but
exponentially few sufficiently long polygons.

These arguments can be extended in various ways. Somewhat weaker results can be obtained
for some cases of polygons in R® (not lying on a lattice) such as equilateral polygons and Gaussian
random polygons [62]. For instance, for Guassian random polygons, Diao et al [62] proved that
there exists a constant € > 0 such that Gaussian random polygons with n edges are knotted with
probability at least 1 — e~ for n sufficiently large. For the lattice case one can prove that prime
knots are exponentially rare and, indeed, that the typical knots in long polymers are very complex
[35].
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4.2 Polygons with Fixed Knot Type

Suppose that we fix the knot type of the polygons and write p,, (k) for the number of n-edge polygons
in Z3 with knot type k. Perhaps surprisingly we do not know if the limit

lim n~! logpn (k) (44)
n—oo
exists (except when k = ¢, the unknot). Arguments similar to those outlined in section 4.1 can be
used to establish that

limsupn =" log pn (k) < k3 (45)

n—oo

for every k, and a concatenation of polygons with knot types k; and ko shows that

P (k1) Py (B2) < 2Pny gy (B #k2). (46)

Setting k; = k, ko = ¢ then establishes that

lim inf n=' log pp (k) > K, (47)
n—oo
but it is an open question as to whether this is an equality or a strict inequality.

There are many numerical (Monte Carlo) investigations of polygons (both lattice polygons and
various off-lattice models in R?®) with fixed knot type [63, 64, 65]. The evidence suggests that, for
k # ¢, the probability that an n-edge polygon has knot type k, increases for small n, goes through
a maximum, and decreases for large n. The location of the maximum depends on k£ and increases
as the knot becomes more complex. Very little is known rigorously about this behaviour.

4.3 Localization of knots

For a given knot type, is the knot typically localized in a long polygon of this knot type? This
question sounds somewhat nebulous (since knotting is a topological property) but it can be made
more precise by imagining splitting the n-edge polygon into two arcs of length m and n — m,
connecting each of these up to form two separate polygons (eg by running parallel rays from the
end points of an arc to a point at infinity) and checking the knot types of the resulting (infinite)
simple closed curves. If one of them (the one originally having m edges, say) is of knot type k and
the other is unknotted we can say that the knot is localized in an arc of length m. If m = o(n) for
typical polygons we can regard the knot as typically localized for large n.

This was a contentious question for many years with evidence being presented for both points of
view. It is probably fair to say that the numerical evidence now favours localization [66]. Again the
evidence is numerical and nothing is known rigorously. A related question is how the mean square
radius of gyration depends on knot type. If we write (R2(k)) for the mean square radius of gyration
for n-edge (lattice) polygons with knot type k, then a reasonable guess is that

(R2(k)) = A(K)n®**® (1 4+ B(k)yn=2® + ) (48)

Numerical evidence suggests that the exponents v(k) and A(k) are independent of k and, perhaps,
that the amplitude A(k) is independent of k [64]. This would be consistent with knots being local-
ized and all the knot dependence appearing in the correction-to-scaling term, with knot-dependent
amplitude B(k).

4.4 Topological Restrictions and Excluded Volume

Consider a model of a ring polymer in R?® where there is no excluded volume. For instance, think of
an equilateral ring polymer constrained to form a ring so that its first and last vertices are identical.
This is just a random walk in R®, constrained to return to the origin at its last step. The mean-square
radius of gyration (R2) ~ n? where n is the number of steps in the walk (or bonds in the ring) and
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v = 1/2. Suppose now that the ring is constrained to have a given knot type. Does this topological
restriction change the value of v from its random walk value of 1/2 to the excluded volume value
of about 0.5887 This question has been investigated numerically (by Monte Carlo techniques) and
there is evidence that the topological restriction changes the universality class to that of polymers
with excluded volume (ie v ~ 0.588) [67].

4.5 Connections to DNA experiments

Knots and links can act as topological obstructions to various cellular processes. For instance, in
mitosis the two circular DNA molecules cannot separate during the formation of the daughter cells
because they are linked, and bacteria cannot express genes on knotted plasmids. Organisms have
a collection of enzymes (eg topoisomerases) which effect strand passages in DNA so that DNA
molecules can be linked and unlinked, or knotted and unknotted, by these strand passages; the cell
abhors topological entanglement in its genetic material, and uses topoisomerases to solve problems
arising from such entanglements. There is considerable interest in understanding the mode of action
of these enzymes and there has been a fruitful collaboration between topologists and molecular
biologists to design and analyse experiments to probe the action of these enzymes [68, 69]. From
the topological point of view the circular DNA molecule can be considered as a sum of two string
tangles, with a numerator construction to form one or more (possibly knotted or linked) circles. The
tangles which typically appear in the biological problems are rational tangles and the classification
of these is well-understood. The biological assumption is that the action of the enzyme is confined
to the tangle confined in a single 3-ball. By examining the products produced by the action of the
enzyme on a given substrate (say an unknotted circular DNA molecule) one can deduce the probable
mechanism of enzyme binding and action, in terms of how the broken DNA strands are spatially
arranged before religation [70].

4.6 Knot Invariants and Knot Energies

A Enot invariant is any function defined on the set of simple closed curves in R® which is a constant
for all simple closed curves with a fixed knot type k. If a simple closed curve’s knot type is unknown,
knot invariants can be useful for either determining the knot type or at least reducing the number of
knot type possibilities. They can also be used as a way to compare two knot types, or, for example,
measure the “complexity” of a knot. For example, the minimum crossing number, the minimum
number of crossings in a regular projection of a knot, is a knot invariant. In the standard knot tables,
the knot types are listed according to their minimum crossing number. Thickness is a geometrically
based knot invariant of recent interest which has been defined and studied in [71, 72]. Recently there
has also been much interest in the study of knot energies, real-valued and non-negative functions,
usually only defined for either the space of smooth knots or the space of polygonal knots. The
global minimum of such a function over a given knot type is another example of a knot invariant
and any knot which is a global minimizer is referred to as an “ideal” representative of the knot type
with respect to the given energy function. Just as with the case of crossing number, these knot
energies provide ways to characterize and compare different knot types and sometimes they offer the
advantage that they are easy to compute. Some examples of knot energies are mobius energies [73]
and ropelength [74].

Since a wide variety of knot energy functions have been proposed and studied, it is important
to develop criteria for assessing and comparing these functions so that one can use a “good” energy
function for a given purpose. Diao et al [75] have developed criteria for assessing knot energies defined
on equilateral polygonal knots. Equilateral polygonal knots are frequently used in computational
studies and the knot energies used for these are often discrete versions of energy functions defined
for smooth knots. Ideally a knot invariant derived from a knot energy function would be able to
distinguish between all knot types; but this is something that would be difficult to prove. Failing
that, one might ask that it would be able to distinguish a knot from the unknot. The minimum
energy configuration for a given knot type may not be unique and may even be singular (ie edges
may intersect or overlap) and hence one might ask that the minimum configuration at least be non-
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singular. Also one might prefer the n — oo limit (for n the number of edges in the polygon) to be
well defined and, if the energy is a discrete version of an energy for smooth knots, that the limit be
the smooth knot energy. Not all knot energies in use satisfy all these properties, however, there are
some that do [75].

5 Conclusion

This is a rich field from which challenging combinatorial, probabilistic, topological, and geometrical
problems have arisen. Significant advances have been made recently in, for example, understanding
scaling limits in high dimensions and in the plane. However, there remain many interesting open
problems especially in the study of interacting polymer and copolymer models, in the study of the
entanglement complexity of polymers, and regarding finding efficient computational approaches for
studying these models.
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