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1 Overview of the Field
The behavior of polymers in a random environment has seen intense activity for a few decades, see [3]
and [2], for example. A polymer is a long molecule consisting of many segments arranged from first to
last, with random orientations. Such a polymer is conveniently modeled using a random walk (Sn)n≥0 or
a Brownian motion (Bt)t≥0. For polymers, the time parameter of the random walk or Brownian motion
represents the length along the polymer rather than physical time. Two kinds of random environments are
commonly considered: environments that do not change with time and those that do change. Polymers in a
changing random environment are often called directed polymers, while models of polymers in a stationary
environment are often called trap models.

To describe these models more precisely, consider the case of a random walk in a changing environment.
Here (Sn)0≤n≤N denotes a random walk of N steps, taking values in Zd. We assume that S0 = 0 and
that (Sn) is a nearest neighbor walk, so that Sn+1 − Sn = ±1 with probability 1

2 each. Let PN denote the
probability measure for the random walk.

Next we describe the environment variables ω(n, z)n≥0,z∈Zd . These are i.i.d. random variables governed
by a probability measure PN .

Finally, we define a probability measure Qn by the following procedure, well known in statistical me-
chanics. For β > 0, let

HN =

n∑
n=0

ω(n, Sn)

ZN = EPN [exp (−βHn)]

dQN =
exp (−βHn)

Zn
d(PN × PN ).

This framework is well known in statistical mechanics, going under the name of directed polymers. A typical
question is to study the diffusive behavior of (Sn)n≤N under QN . Under PN , we know that SN ≈ C

√
N

(diffusive behavior). This behavior continues to hold under QN , for small values of β. However, for large
values of β, it is known that |SN | is typically much smaller than

√
N , and this behavior is called localization.

Under localization, SN may even concentrate at a single point.
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2 Scientific Progress Made
The goal of our team project is to study diffusive behavior and localization in the context of a random string.

In our first project we studied the annealed survival probability of a random string in a Poissonian trap
environment. Let (Ω,F ,Ft,P0) be a filtered probability space on which Ẇ = Ẇ(t, x) is a d-dimensional
random vector whose components are i.i.d. two-parameter white noises adapted to Ft. We consider a random
string u(t, x) ∈ Rd, which is the solution to the following stochastic heat equation (SHE)

∂tu(t, x) =
1

2
∂2
xu(t, x) + Ẇ(t, x)

u(0, x) = u0(x)
(2.1)

on the circle x ∈ [0, J ], having endpoints identified, and t ∈ [0, T ]. The initial profile u0 is assumed to be
continuous. Note that we will use boldface letters to denote vector-valued quantities. We will be interested
in the evolution of the random string in a field of obstacles centered at points coming from an independent
Poisson point process. More precisely, let (Ω1,G,P1) be a second probability space on which is defined a
Poisson point process η with intensity ν given by

η(ω1) =
∑
i≥1

δξi(ω1), ω1 ∈ Ω1,

with points {ξi(ω1)}i≥1 ⊂ Rd.
The obstacles will be formed via a potential V : Rd × Ω1 → [0,∞]

V(z,η) =
∑
i≥1

H(z− ξi),

where H : Rd → [0,∞] is a non-negative, measurable function whose support of H is contained in the closed
ball B(0, a) of radius 0 < a ≤ 1 centered at 0.

We will work in the product space (Ω× Ω1,F × G,P0 × P1) along with the filtration (Ft × G)t≥0. We
will write E for the expectation with respect to P := P0 × P1, and Ei for the expectation with respect to Pi

for i = 0, 1. Our main quantity of interest is the quenched and the annealed survival probabilities given by

ST,η(ω1) = E0

[
exp

(
−
∫ T

0

∫ J

0

V
(
u(s, x),η(ω1)

)
dxds

)]
, and

ST = E

[
exp

(
−
∫ T

0

∫ J

0

V (u(s, x),η) dxds

)]

respectively. Our main objective in this project was to provide asymptotics in T, J on ST and ST,η(ω1). We
have obtained upper and lower bounds on ST for large T and J .

The second project we started working at the meeting was on the discrete stochastic heat equation. Here
the range space is Zd and time t ∈ R+ and distance along the string is n ∈ Z ∩ [0, N ]

We are studying a random process u(t, n). There is a collection of Poisson clocks.

1. For each n, there are 2d Poisson processes corresponding to the 2d coordinate directions. When one of
the clocks rings, say at time t, then u(t, n) moves one unit in the corresponding coordinate direction.
Thus u(t, x) stays on the lattice.

2. Let v(t, n) = u(t, n + 1) − 2u(t, n) + u(t, n − 1) (the discrete Laplacian). Consider the coordinates
v = (v1, . . . , vd). Consider d Poisson processes, corresponding to vi(t, n) respectively. When one of
the clocks rings, then u(t, n) moves one unit in the corresponding vi direction.

We can set up the following analogue of the directed polymer in the context of the discrete random string.
For each z ∈ Zd, we create an independent noise variable ω(t, z) and an independent Poisson process. When
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the clock rings, say at time t, we replace ω(t, z) by an independent copy of itself. Then we set up the directed
polymer measure

dPT,ω
u =

exp
(
−β
∑

z∈Zd

∫ T

0
ω(t, u(t, z))dt

)
ZT (ω)

dPu

Our aim is to understand the asymptotics of PT,ω
u .

3 Outcome of the Meeting
At this meeting we finalised our first results, and made them available on the arxiv [1]. We submitted the
paper for publication. We were also able to prove the asymptotics in J of ST and are currently writing it up.
We plan to continue to work on the discrete polymer during the coming year.
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