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1 Overview of the Field

The workshop focuses on statistical learning in large-scale networks, typically represented by graphs with
vertices and edges. The research involves modeling the networks and observations, devising learning algo-
rithms, analyzing the performance of the algorithms, deriving bounds on the possible performance of best
algorithms, and deploying theoretically-grounded algorithms to real network data. Many machine learning
problems deal with networks that encode similarities or relationships among different objects, for which ob-
servational data may be limited in extent and noisy. Thus learning the desired information requires highly
efficient algorithms that can process large-scale network data and detect tenuous statistical signatures.

The aim of the workshop is to bring together the leading researchers in this area to discuss recent results
and open problems, as well as to explore new mathematical techniques and models to study these problems.
In addition, our goal is to give graduate students and post-doctoral researchers an opportunity to learn about
recent results and important open problems in this field, as well as to present their own research.

Research on learning in networks combines techniques from probability theory, graph theory and com-
binatorics, statistical physics, optimization, and information theory. The researchers attending the workshop
will span the disciplines of mathematics, applied probability, computer science, physics, information theory,
and statistics. Besides tutorials and research presentations, the workshop will encourage and provide time
for attendees to form study groups to have focused discussions on research problems and directions that
arise during the workshop. The goal of the workshop is to act as a catalyst for new research directions and
approaches in the emerging research area of statistical learning for large scale networks.

2 Objectives

The overall objective is to better understand what is information theoretically and computationally possible
to learn from large-scale network data, and to identify the algorithms to do it. The topics are organized into
three interrelated areas, ranging from inference problems for single graphs, to inference involving two graphs,
to classification of graphs from general families.

2.1 Recovering structure from single graphs

Over the past ten years, there has been much focus on a particular problem of recovering structure from a
graph, namely, the community detection problem. See recent expositions in [22, 1]. Community detection



has found numerous applications across various disciplines. Most work assumes that networks can be parti-
tioned into groups of nodes with denser connections internally and sparser connections between groups, and
considers random graph models with some underlying cluster structure such as the stochastic block model
(SBM) or planted partition model. In its simplest form, nodes are partitioned into clusters, and any two nodes
are connected independently at random with probability p if they are in the same cluster and with probability
q otherwise. The problem of cluster recovery under SBM has been extensively studied and many efficient
algorithms with provable performance guarantees have been developed. An intriguing computational barrier
has been identified when community sizes are smaller, showing that an “informationally possible but compu-
tationally hard” regime exists under the planted clique hardness hypothesis. Promising recent developments
are given in [4], and further developments in that direction will be explored at the workshop.

The stochastic block model fails to capture two basic properties of networks that are seen in practice.
Firstly, it does not model networks that grow over time, such as citation networks or social networks. Sec-
ondly, it does not model graphs with heavy-tailed degree distributions, and therefore does not explain how
real networks, such as the political blog network, have a few nodes with very high degrees (hubs). Existing
community detection algorithms, developed for the, may not perform well on real networks, even though
they achieve remarkable performance in theory. Recently, Johnathan Jordan [19] formulated a general model
of preferential attachment in which the attachment weights can depend on the labels of both existing and the
arriving vertices. Antunovic, Mossel, and Racz [2] proposed instead that the community membership of a
new vertex be determined endogenously, based on the membership of the vertices to which the new vertex
is attached. An open area of research to be addressed at the workshop is to derive community detection and
recovery algorithms in the face of dynamics as modeled in these two papers.

Applications in DNA assembly and particle tracking have brought to the fore two other problems of
discovering structure in graphs, namely, recovery of hidden Hamiltonian cycles and recovery of hidden bi-
partite matchings. For the recovery of hidden bipartite matchings, a challenging problem is to prove the
information-theoretic limit, which was conjectured and empirically computed by the statistical physicists [8].
Researchers working this area from the physics side, statistics side, and mathematical analysis side will be
able to exchange ideas to push for breakthroughs on this conjecture at the workshop. The hidden Hamilto-
nian cycle recovery problem is motivated from de novo genome assembly, the reconstruction of an organ-
ism’s long sequence of A,G,C,T nucleotides from high-throughput, fragmented DNA sequencing data. The
high-throughput DNA sequencing method generates billions of short fragment reads of DNA with low cost;
however, these short reads are of only about 100 or 200 base pairs in length and ¢ prone to errors; thus it
is challenging to assemble those noisy, short reads to reconstruct a long and contiguous genome sequence
both accurately and efficiently. Despite the significant algorithmic progress for genome assembly from short
reads [5], we are still far from obtaining a high-quality and highly contiguous genome sequence. This will be
an interesting topic of focus at the workshop.

2.2 Learning from multiple graphs

Graph matching, or learning the vertex correspondence between two edge-correlated graphs, is an interesting
prototype problem with numerous applications in network privacy, system biology, computer vision, and
natural language processing [9]. Both seeded graph matching wherein an initial seed set of correctly matched
vertex pairs is revealed as side information and the seedless graph matching wherein such an initial seed set
is unavailable are of interest. Driven by applications in network de-anonymization, a recent line of work
initiated the statistical analysis of graph matching by assuming that G, and G} are randomly generated
according to the following correlated Erdos-Renyi random graphs model G(n,q;s). Specifically, G, ~
G(n,q) and, viewing G, and G}, as adjacency matrices, G} is obtained from G, by flipping 1 — 0 with
probability 1—s and 0 — 1 with probability ¢(1—s)/(1—gq) so that G, ~ G(n, q). Equivalently, imagine there
is a parent Erdos-Renyi graph G(n, p), where p = ¢/s, and G, and G}, are each obtained by independently
removing each edge from the parent graph with probability s. One can imagine GG, is a facebook friendship
network of a group of people with identities removed, and G}, is the twitter network of the same group of
people with known identities; the task is to de-anonymize the vertex identities in facebook network by finding
the underlying mapping between the vertex sets of G, and Gy,

In the noiseless case s = 1, graph matching under G(n, ¢; 1) reduces to the graph automorphism prob-
lem for an Erdos-Renyi graph G(n,q). In this case, a celebrated result [26] shows that exact recovery of



the underlying permutation is information-theoretically impossible if and only if ng > logn + w(1) for
g < 1/2. Recent work [11] has extended this result to noisy case where s < 1, showing that the maxi-
mum likelihood estimator, or equivalently the optimum of quadratic assignment problem, coincides with the
ground truth 77* with probability 1 — o(1), provided that ngs > logn + w(1) under additional assumptions
q < O(log™' n) and ¢(1 — 5)2/s < O(log>(n)); on the contrary, any estimator is correct with probability
o(1), if ngs < logn — w(1). From a computational perspective, in the noiseless case with s = 1, there
exist linear-time algorithms which attain the recovery threshold whenever np = logn + w(1). However, in
the noisy case, very little is known about the performance guarantees of efficient graph matching algorithms.
A focus of the workshop will be on the computational - informational gap, and tools from quadratic assign-
ment algorithms and stochastic analysis should be brought together to bear on this problem. Experts on the
quadratic assignment problem will be able to exchange ideas with physicists and statisticians on this problem
at the workshop.

2.3 Learning graphical properties efficiently via graph sampling

Learning properties of large graphs from samples is an important problem in statistical network analysis,
dating back to the early work of Goodman [17] and Frank [14]. In many big-data analytic applications such
as social networks and Internet service provider networks which typically involve billions of vertices, the full
network is either unobserved (due to the underlying experimental design and data collection mechanism) or
too expensive to be stored (due to constraints on computational resources) [10]. What is observed is a partial
snapshot of the network, e.g., a subset of the vertices or edges, which can be viewed as sampled from a statis-
tical model. Furthermore, even when the full network can be observed, sampling is a powerful summarization
technique that significantly reduces the amount of data while retaining the ability to reconstruct the important
features of the original network. In dealing with sampled network data, one must rely on carefully designed
statistical estimators that take into account the bias induced by sampling in order to conduct sound inference.

Motivated by applications in social networks, econometrics, and Internet tomography, one of the most
useful graph properties to learn from samples is the number of various features in a network, including basic
local structures such as motifs or graphlets (e.g. edges, triangles, wedges, stars, cycles, cliques, clustering
coefficients), or global features such as the number of connected components. Various algorithms based on
edge and degree queries have been proposed in the computer science literature to estimate the average degree,
triangle counts, and more general subgraph counts or connected components [3] in sublinear time; however,
these results largely focus on time complexity and use adaptive queries that might not be possible in weaker
sampling models. In the statistics literature, estimating graph properties has a long history dating back to
the early work of Frank, Capobianco, and Goodman; however, these results are mainly confined to unbiased
estimators and little is known about their optimality. Building on recent work on estimating distributional
properties on large domains, the workshop will focus on a modern study of learning graph properties under
various sampling models under the new light of high-dimensional statistics.

3 Presentation Highlights

3.1 Algorithmic Decorrelation and Planted Clique in Dependent Random Graphs

[Guy Bresler] There is a growing collection of average-case reductions starting from Planted Clique (or
Planted Dense Subgraph) and mapping to a variety of statistics problems, sharply characterizing their com-
putational phase transitions. These reductions transform an instance of Planted Clique, a highly structured
problem with its simple clique signal and independent noise, to problems with richer structure. In this talk
we aim to make progress in the other direction: to what extent can these problems, which often have com-
plicated dependent noise, be transformed back to Planted Clique? Such a bidirectional reduction between
Planted Clique and another problem shows a strong computational equivalence between the two problems.
As a concrete instance of a more general result, we consider the planted clique (or dense subgraph) prob-
lem in an ambient graph that has dependent edges induced by randomly adding triangles to the Erdos-Renyi
graph G(n,p), and show how to successfully eliminate dependence by carefully removing the triangles while
approximately preserving the clique (or dense subgraph). In order to analyze our reduction we develop new



methods for bounding the total variation distance between dependent distributions. Joint work with Chenghao
Guo and Yury Polyanskiy.

3.2 Spectral algorithms for community detection

[Julia Gaudio] Many networks exhibit community structure, meaning that there are two or more groups
of nodes which are densely connected. Identifying these communities gives valuable insights about the
latent features of the nodes. Community detection has been used in a wide array of applications including
online advertising, recommender systems (e.g., Netflix), webpage sorting, fraud detection, and neurobiology.
I will present my work on algorithms for community detection in two contexts, each with an underlying
probabilistic generative model.

(1) Censored networks: How can we identify communities when some connectivity information is miss-
ing? Here we consider recovery from the Censored Stochastic Block Model. (Joint work with Souvik Dhara,
Elchanan Mossel, and Colin Sandon [12])

(2) Higher-order networks: Beyond pairwise relationships. Here we consider recovery from the Hyper-
graph SBM, where we are given access to the ”’similarity matrix” of the hypergraph. (Joint work with Nirmit
Joshi [15])

We show that simple spectral algorithms achieve the information-theoretic thresholds of both exact re-
covery problems.

3.3 The (symmetric) Ising perceptron: progress and problems

[Will Perkins] The Perceptron model was proposed as early as the 1950’s as a toy model of a one-layer
neural network. The basic model consists of a set of solutions (either the Hamming cube or the sphere of
dimension n) and a set of constraints given by n-dimensional Gaussian vectors. The constraints are that
the inner product of a solution vector with each constraint vector scaled by sqrtn must lie in some interval
on the real line. Probabilistic questions about the model include the satisfiability threshold (or the “’storage
capacity”) and questions about the typical structure of the solution space. Algorithmic questions include the
tractability of finding a solution (the learning problem in the neural network interpretation). I will survey the
model, the main problems, and recent progress.

3.4 Stochastic Bin Packing with Time-Varying Item Sizes

[Weina Wang] In today’s computing systems, there is a strong contention between achieving high server
utilization and accommodating the time-varying resource requirements of jobs. Motivated by this problem,
we study a stochastic bin packing formulation with time-varying item sizes, where bins and items correspond
to servers and jobs, respectively. Our goal is to answer the following fundamental question: How can we
minimize the number of active servers (servers running at least one job) given a budget for the cost associated
with resource overcommitment on servers? We propose a novel framework for designing job dispatching
policies, which reduces the problem to a policy design problem in a single-server system through policy
conversions. Through this framework, we develop a policy that is asymptotically optimal as the job arrival
rate increases. This is a joint work with Yige Hong at Carnegie Mellon University and Qiaomin Xie at the
University of Wisconsin—Madison.

3.5 Spectral pseudorandomness and the clique number of the Paley graph

[Dmitry Kunisky] The Paley graph is a number-theoretic construction of a graph on the vertex set of a finite
field of prime order p that in many ways behaves ’pseudorandomly.” One manifestation of pseudorandomness
is that the clique number of the Paley graph is widely believed to be polylogarithmic in p. In contrast, the
best known upper bounds are only of order square root of p; it is a long-standing open problem in number
theory to improve on this scaling.

I will present several pieces of recent and ongoing work studying approaches to this question based on
convex optimization and spectral graph theory, which involve understanding the extent to which the Paley
graph is “spectrally pseudorandom” in various senses. First, I will show that the degree 4 sum-of-squares



relaxation of the clique number of the Paley graph has value at least the cube root of p, derandomizing an
analogous result for Erdos-Renyi random graphs due to Deshpande and Montanari (2015). On the other hand,
I will offer some evidence that this relaxation may in fact yield bounds of polynomial scaling between the
square and cube roots of p, thanks to the spectrum of the Paley graph being sufficiently different from that of
an Erdos-Renyi graph. Second, I will show that certain deterministic induced subgraphs of the Paley graph
have the same limiting spectrum as induced subgraphs on random sets of vertices of the same size. I will
outline how stronger results of this form would also lead to clique number bounds improving on the state of
the art.
Based partly on joint work with Xifan Yu.

3.6 Correlated stochastic block models: graph matching and community recovery

[Miklos Racz] I will discuss statistical inference problems on edge-correlated stochastic block models. We
determine the information-theoretic threshold for exact recovery of the latent vertex correspondence between
two correlated block models, a task known as graph matching. As an application, we show how one can
exactly recover the latent communities using multiple correlated graphs in parameter regimes where it is
information-theoretically impossible to do so using just a single graph. Furthermore, we obtain the precise
threshold for exact community recovery using multiple correlated graphs, which captures the interplay be-
tween the community recovery and graph matching tasks. This is based on joint work with Julia Gaudio and
Anirudh Sridhar [16].

3.7 Uniqueness of BP fixed point for Ising models

[Yury Polyanskkiy] In the study of Ising models on large locally tree-like graphs, in both rigorous and non-
rigorous methods one is often led to understanding the so-called belief propagation distributional recursions
and its fixed point (also known as Bethe fixed point, cavity equation, RSB etc). In this work we prove there
is at most one non-trivial fixed point for Ising models for both zero and certain random external fields.

As a concrete example, consider a sample A of Ising model on a rooted tree (regular, Galton-Watson, etc).
Let B be a noisy version of A obtained by independently perturbing each spin as follows: B, equals to A,
with some small probability § and otherwise taken to be a uniform +-1 (alternatively, 0). We show that the
distribution of the root spin A, conditioned on values B, of all vertices v at a large distance from the root is
independent of § and coincides with §=0. Previously this was only known for sufficiently “low-temperature”
models. Our proof consists of constructing a metric under which the BP operator is a contraction (albeit
non-multiplicative). I hope to convince you our proof is technically rather simple.

This simultaneously closes the following 5 conjectures in the literature: uselessness of global information
for a labeled 2-community stochastic block model, or 2-SBM (Kanade-Mossel-Schramm’2014); optimal-
ity of local algorithms for 2-SBM under noisy side information (Mossel-Xu’2015); independence of robust
reconstruction accuracy to leaf noise in broadcasting on trees (Mossel-Neeman-Sly’2016); boundary irrel-
evance in broadcasting on trees (Abbe-Cornacchia-Gu-P.’2021); characterization of entropy of community
labels given the graph in 2-SBM (ibid).

Joint work with Qian Yu (Princeton) [27].

3.8 Finite-sample lower bounds on information requirements for causal network in-
ference

[Xiaohan Kang] Recovery of the causal structure of dynamic networks from noisy measurements has long
been a problem of intense interest across many areas of science and engineering. Many algorithms have been
proposed, but there is no work that compares the performance of the algorithms to converse bounds in a non-
asymptotic setting. As a step to address this problem, this talk discusses lower bounds on the error probability
for causal network support recovery in a linear Gaussian setting [20]. The bounds are based on the use of
the Bhattacharyya coefficient for binary hypothesis testing problems with mixture probability distributions.
Comparison of the bounds and the performance achieved by two representative recovery algorithms are given
for sparse random networks based on the Erd6s—Rényi model. A related problem of estimating the error
probabilities for a binary hypothesis testing problem from likelihood ratio samples is also discussed.



3.9 Attributed Graph Alignment: Fundamental Limits and Efficient Algorithms

[Lele Wang] We consider the graph alignment problem, where the goal is to identify the vertex/user corre-
spondence between two correlated graphs. Existing work mostly recovers the correspondence by exploiting
the user-user connections. However, in many real-world applications, additional information about the users,
such as user profiles, might be publicly available. In this talk, we introduce the attributed graph alignment
problem, where additional user information, referred to as attributes, is incorporated to assist graph alignment.
We establish both the information-theoretic limits and the feasible region by polynomial-time algorithms for
the attributed graph alignment. Our results span the full spectrum between models that only consider user-
user connections and models where only attribute information is available [24].

3.10 Average-Case Computational Complexity of Tensor Decomposition

[Alex Wein] Tensor decomposition is an algorithmic primitive with applications in many machine learning
tasks, including community detection and its mixed-membership or multi-layer variants.

We consider a simple model for tensor decomposition: suppose we are given a random rank-r order-3
tensor—that is, an n-by-n-by-n array of numbers that is the sum of r random rank-1 terms—and our goal is
to recover the individual rank-1 terms. In principle, this decomposition task is possible when r < cn? for
a constant c, but all known polynomial-time algorithms require 7 < n3/2. Is this a fundamental barrier for
efficient algorithms?

In recent years, the average-case complexity of various high-dimensional statistical tasks has been re-
solved in restricted-but-powerful models of computation such as statistical queries, sum-of-squares, or low-
degree polynomials. However, tensor decomposition has remained elusive, largely because its hardness is
not explained by a planted versus null” testing problem. We show the first formal hardness for average-case
tensor decomposition: when  >> n3/2, the decomposition task is hard for algorithms that can be expressed
as low-degree polynomials in the tensor entries [25].

3.11 Random graph matching at Otter’s threshold via counting chandeliers

[Jiaming Xu] We propose an efficient algorithm for graph matching based on similarity scores constructed
from counting a certain family of weighted trees rooted at each vertex. For two ER graphs G(n, q) whose
edges are correlated through a latent vertex correspondence, we show that this algorithm correctly matches all
but a vanishing fraction of the vertices with high probability, provided that nqg — oo and the edge correlation
coefficient p satisfies p? > o ~ 0.338, where « is Otter’s tree-counting constant. Moreover, this almost
exact matching can be made exact under an extra condition that is information-theoretically necessary. This
is the first polynomial-time graph matching algorithm that succeeds at an explicit constant correlation and
applies to both sparse and dense graphs. In comparison, previous methods either require p = 1 — o(1) or are
restricted to sparse graphs.

The crux of the algorithm is a carefully curated family of rooted trees called chandeliers, which allows
effective extraction of the graph correlation from the counts of the same tree while suppressing the undesirable
correlation between those of different trees.

Based on joint work with Cheng Mao (Gatech), Yihong Wu (Yale), and Sophie H. Yu (Duke) [21].

3.12 Local and global expansion in random geometric graphs

[Tselil Schramm] Consider a random geometric 2-dimensional simplicial complex X sampled as follows:
first, sample n vectors ui, ..., u, uniformly at random on S2=1 - then, for each triple ¢,j,k € [n], add
{i,J,k} and all of its subsets to X if and only if (u;,u;) > 7, (u;,ux) > 7, (u;, ux) > 7. We prove that
for every € > 0, there exists a choice of d = ©(logn) and 7 = 7(e, d) so that with high probability, X is a
high-dimensional expander of average degree n® in which each 1-link has spectral gap bounded away from
1/2.



3.13 Optimal Full Ranking from Pairwise Comparisons

[Chao Gao] We consider the problem of ranking n players from partial pairwise comparison data under the
Bradley-Terry-Luce model. For the first time in the literature, the minimax rate of this ranking problem is
derived with respect to the Kendall’s tau distance that measures the difference between two rank vectors by
counting the number of inversions. The minimax rate of ranking exhibits a transition between an exponential
rate and a polynomial rate depending on the magnitude of the signal-to-noise ratio of the problem. To the best
of our knowledge, this phenomenon is unique to full ranking and has not been seen in any other statistical
estimation problem. To achieve the minimax rate, we propose a divide-and-conquer ranking algorithm that
first divides the n players into groups of similar skills and then computes local MLE within each group. The
optimality of the proposed algorithm is established by a careful approximate independence argument between
the two steps [6].

3.14 Universality of Approximate Message Passing algorithms and tensor networks

[Zhou Fan] Approximate Message Passing (AMP) algorithms provide a valuable tool for studying mean-field
approximations and dynamics in a variety of applications. Although usually derived for matrices having
independent Gaussian entries or satisfying rotational invariance in law, their state evolution characterizations
are expected to hold over larger universality classes of random matrix ensembles [23].

3.15 Revisiting Jerrum’s Metropolis Process for the Planted Clique Problem

[Mlias Zadik] Jerrum in 1992 (co-)introduced the planted clique model by proving the (worst-case initial-
ization) failure of the Metropolis process to recover any o(sqrt(n))-sized clique planted in the Erdos-Renyi
graph G(n,1/2). This result is classically cited in the literature of the problem, as the “first evidence” the
o(sqrt(n))-sized planted clique recovery task is “algorithmically hard”.

In this work, we show that the Metropolis process actually fails to work (under worst-case initialization)
for any o(n)-sized planted clique, that is the failure applies well beyond the sqrt(n) “conjectured algorithmic
threshold”. Moreover we also prove, for a large number of temperature values, that the Metropolis process
fails also under “natural initialization”, resolving an open question posed by Jerrum in 1992. This is joint
work with Zongchen Chen and Elchanan Mossel [7].

3.16 Detection-Recovery Gap for Planted Dense Cycles

[Cheng Mao] Planted dense cycles are a type of latent structure that appears in many applications, such as
small-world networks in social sciences and sequence assembly in computational biology. We consider a
model where a dense cycle with expected bandwidth n7 and edge density p is planted in an Erd6s—Rényi
graph G(n, q). We characterize the computational thresholds for the associated detection and recovery prob-
lems for the class of low-degree polynomial algorithms. In particular, a gap exists between the two thresholds
in a certain regime of parameters. For example, if n=%/4 < 7 < n~/2andp = Cq = (:)(1) for a constant
C > 1, the detection problem is computationally easy while the recovery problem is hard.

3.17 On community detection in preferential attachment networks

[Bruce Hajek] A message passing algorithm is derived for recovering communities within a graph generated
by a variation of the Barabasi-Albert preferential attachment model [18]. The estimator is assumed to know
the arrival times, or order of attachment, of the vertices. The derivation of the algorithm is based on belief
propagation under an independence assumption. Two precursors to the message passing algorithm are ana-
lyzed: the first is a degree thresholding (DT) algorithm and the second is an algorithm based on the arrival
times of the children (C) of a given vertex, where the children of a given vertex are the vertices that attached to
it. Comparison of the performance of the algorithms shows it is beneficial to know the arrival times, not just
the number, of the children. The probability of correct classification of a vertex is asymptotically determined
by the fraction of vertices arriving before it. Two extensions of Algorithm C are given: the first is based on
joint likelihood of the children of a fixed set of vertices; it can sometimes be used to seed the message passing
algorithm. The second is the message passing algorithm. Simulation results are given.



4 Outcome of the meeting

There were many interesting connections among the problems and results discussed at the meeting. It demon-
strated a vibrant major research effort underway to understand the performance limits, from both an informa-
tion and computational viewpoint, for many mostly unsupervised statistical learning problems. The workshop
brings together many young researchers and promotes research from members of underrepresented groups.

The planted clique problem, the planted dense subgraph problem, and the problem of finding the largest
clique in an Erdds-Rényi random graph were the primary examples of problems believed to be computation-
ally difficult in the average case. Zadik presented work on the limitations of the Metropolis algorithm for such
problems. Bresler focused on expanding the set of equivalently difficult problems. Wein focused on proving
the performance limits of low-degree polynomial algorithms. Mao presented new information-theoretic and
computational thresholds for the planted dense cycles model.

Graph matching and community detection problems were topics of many of the talks. Wang presented
results of graph matching with attribute information. Xu presented results on efficient algorithms for graph
matching based on counting subgraphs and identified a possible boundary in parameter space where a gap
emerges between information limits and computationally feasible limits. Gaudia presented results showing
the power of spectral methods, with careful weighting, can provide exact recovery up to information-theoretic
limits in a censored block model. Racz presented the sharp information-theoretic threshold for community
recovery under two correlated stochastic block models.

Progress continues to be made in the special case of sparse random graphs, related to random trees and
message-passing algorithms. Polyanski presented a general method based on information theory to prove in
great generality that there is at most one solution to a key fixed point equation for probability distributions
that have naturally arisen in many works in this area such as the BP iteration. Fan presented new tools for
analyzing the approximate message-passing algorithms in dense regimes.

Kunisky presented work showing an interplay between statistical methods and number theoretic methods.
Perkins presented an overview and recent results on the storage capacity and typical complexity for the
perceptron storage problem. Schramm presented work showing the high-dimensional expansion and spectral
property of random geometric graphs.

S Open problems

Through talks, discussions offline, and an open problem session, many interesting open problems and con-
jectures were raised. Some of the open problems discussed are listed here.

1. (Raised by Mikos Racz) Given an Erdos-Renyi graph with parameter Y2, consider the problem of iden-
tifying a large clique by an adaptive algorithm that queries pairs of vertices and for each pair learns
whether the pair is an edge in the graph. Suppose computation power is not constrained but only O(n)
queries are permitted. A simple two-stage algorithm can find a clique of size % logy n with high prob-
ability. An open question is whether cliques larger than that can be found with O(n) queries. There is
a published upper bound on the largest size that can be found of roughly (1.8) log, n.

2. (Attributed to Karp) For Erdos-Renyi graphs with parameter Y2, determine the largest clique that can
be found using a polynomial complexity algorithm. In particular, can such algorithms achieve size
o logy n for some o > 1 asn — 00?

3. (Raised by Yihong Wu) Computational gap for learning mixture of Gaussians? Given Xy,..., X,
drawn iid from a density f which is k-component Gaussian mixture (k-GM), namely,
Zle w; N (u;, I7) with unknown weights and centers, the goal is to learn the density f by producing a
proper (also a k-GM) estimator f , which is close to the true density in the sense that, say, the Hellinger
distance satisfies E[H ( f.f )] < e. Assume that k is a constant. It is known that [13] (a) Information
theoretically, the optimal sample complexity is n = ©(d/€?). (b) Computationally, for k < 2, there are
polynomial-time (in d and n) algorithms that achieve the optimal sample complexity; however, for k >
3, the best polynomial-time algorithms require a sample size n = Q(d/e*). Is there a computational
barrier that emerges for learning a 3-component Gaussian mixture model?



4. (Raised by Dmitriy Kunisky) Suppose X1, ..., X,, are i.i.d. standard Gaussian vectors in R%. If d —
00, how quickly can n grow with d such that there is an ellipsoid passing through all of the X;? This
problem was posed by Saunderson, Parrilo, and Willsky (2013), who conjectured a sharp threshold on
the scale n ~ d2: if n < (1 — €)d? then with high probability (w.h.p.) the X; can be interpolated by
an ellipsoid, while if n > (3 + €)d? then w.h.p. they cannot (in both cases for ¢ > 0 fixed as d — oo.
However, the best known rigorous results do not achieve either threshold. The best known negative
result follows by a simple linear algebra argument, showing that if n > %dQ then w.h.p. the X; cannot
be interpolated by an ellipsoid. The best known positive result, due to Venkat, Turner, and Wein (2022),
shows that if n < d?/polylog(d) then w.h.p. the X; can be interpolated by an ellipsoid. Improving
either of these results to approach closer to the conjectured sharp threshold is an open problem.

5. (Raised by Jiaming Xu) Planted minimum spanning tree model. Consider a complete weighted graph
with n vertices and edge weights i.i.d. exp(1). Frieze (1985) proves that the expected total weight of
the minimum spanning tree converges to ((3) = > .-, i~ as n — oo. Now, let’s consider a planted

model, where T is the random minimum spanning tree described as above. Then we observe a new

complete weighted graph W such that W, is independently distributed according to exp(A) if the edges

e is contained in T™* and exp(1/n) otherwise. The goal is to estimate 7™ based on the observation of

W. Note that the maximum likelihood estimator reduces to the minimum spanning tree 7i,;, on W.

An open question is to determine the asymptotic overlap between T1,,;, and T as a function of A. Note

that the random minimum spanning tree 7™ is different from the uniform spanning tree in the complete

graph. Moreover, T can be recursively constructed using the Kruskal’s algorithm.
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