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1 Overview of the Field

The field “dynamical processes on networks” is the marriage of two diverse disciplines that
have long been studied independently. Given a random graph with n vertices, we endow
each vertex a “state” that changes over time as the vertex interacts with its neighbors. This
defines a stochastic process on the graph. The probability law of the stochastic process de-
pends on the rules of interaction among the vertices. Such systems arise naturally in physics,
epidemiology, computer science and engineering disciplines. An example from epidemiology
would be the spread of an infectious disease over a human population, which, in the eyes of
a computer scientist, also describes the spread of virus, or information dissemination over
a computer network. In this workshop, we specifically focused on scaling limits of such
systems as the size of the network grows arbitrarily large. For instance, we asked questions
like “can we approximate the limiting process by a simpler mathematical description? If so,
under what conditions? How accurate are the standard statistical physics mean-field scaling
limits? When do the mean-field limits become exact, if at all? How does the structure of
the network impact the limiting process? Is the degree distribution sufficient to describe the
limiting process? If there are two or more competing processes such as infectious diseases,
which one will eventually pervade the entire graph? Is steady co-existence of two or more
competing processes possible? If so, for which class of random graphs” etc.

Dynamical processes on networks have accrued growing research interest over the years
primarily because of its vast applicability. We come across a host of dynamical processes
arising from epidemiology [17], biology [19, 18, 20, 21], statistical physics [22, 23, 24], and
computer science [30, 31, 32, 33]. These dynamical processes are often similar and hence,
lend themselves to application across disciplines [27, 28, 29]. An account of major develop-
ments in the field can be found in [10, 11, 12]. With the overwhelming proliferation of social
networks, never has it been more important to understand and model the spread of rumour,
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the dissemination of propaganda, or the very behaviour of social networks in general, which
is often quite complex and adaptive. As our dependence on computer networks grows, so
does the need to better understand and prevent the spread of computer viruses. Similarly,
incorporating network structure and studying its impact on various epidemic process is also
the need of the hour. The proposed workshop would therefore be opportune.

Although dynamical processes on random graphs themselves have been studied by math-
ematicians, physicists, epidemiologists, computer scientists and engineers for some time now,
a comprehensive and mathematically rigorous body of work on various scaling limits (such
as laws of large numbers, central limit theorems, large and moderate deviations) under
general settings remains elusive. Such scaling limits have been derived rigorously only for a
handful of special cases till date. Notable breakthroughs in the context of epidemiological
processes include [43, 45, 42, 2, 1], appearing primarily in probability literature. Classical
models arising from statistical physics have also been transferred to a random graph set-
ting from the traditional lattice assumption. First passage percolation, for instance, has
been studied rigorously on random graphs and several scaling limits have been derived, see
[4, 6] and the references therein. Another example is scaling limits of (critical) percolation
clusters, see [5, 7, 8, 9] and the (many) references therein. For an extended discussion, we
refer to [10], where also thermodynamic limits of the Ising model are discussed and a rather
complete overview of the literature is given.

The above models are especially interesting from a non-equilibrium perspective. Com-
petition on random graphs has also attracted some attention of late [15, 14, 16]. There
has already been a considerable amount of research work in the network science discipline,
covering various statistical features of static networks. These aspects will not be covered
in this workshop. We specifically focus on scaling limits as we believe a rich body of rigor-
ously derived mathematical results on scaling limits still needs to be consolidated. We also
consider models where the random graph itself may change as a result of the interactions
among the vertices, as we would expect in many real life applications.

The two main mathematical objects are: i) a random graph G = (V,E), where V =
{1, 2, . . . , n}, for some natural number n, is the set of vertices and E ⊆ V × V is the
set of edges; and ii) a (multivariate) stochastic process X capturing the dynamical process
on G. Depending on the dynamical process, X will often be a vector of counts or proportions
(corresponding to a partition of the population), for example, counts of susceptible, infected
and recovered (or removed) individuals in a stochastic compartmental SIR model [13]. The
law of X depends on n and the properties of the random graph G. Given a class of random
graphs, we seek to find a scaling sequence an > 0 (a non-decreasing sequence of positive
real numbers) such that: i) supt ||a−1

n X(t) − x(t)|| → 0 in probability as n → ∞ where x
satisfies some suitable ordinary differential equation (ODE); or ii) a−1

n X ⇒ X̃ weakly in
some appropriate topology, where X̃ is some limiting process such as a gaussian (vector)
martingale. We ask questions like “what restrictions do we need to impose on the class of
random graphs to ensure existence of such a scaling sequence an? Under what (additional)
condition(s) can the results be strengthened to almost sure convergence or Lr-convergence
for some r > 0”? Establishing corresponding large and moderate deviations principles will
also be crucial. It will be interesting to compare these limiting results with those obtained
by tools from statistical physics such as the mean field techniques.
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2 Recent Developments and Open Problems

One line of research has been inspired by the mean-field approach from statistical physics.
Direct applications can be found in [27, 28] where the authors study epidemic dynamics on
scale-free networks of [35]. A majority of work in this direction aims at obtaining limiting
ODEs for the proportions of different compartments of the population. Notwithstanding
the simplicity of these methods, the scaling limits presented are by design approximate and
lack mathematical rigour. See [11, Chapter 1] for a critique.

The standard mean-field method was further improved by use of pair-approximation
in [36, 37, 38]. Several other improvements yielding less approximate results have been
proposed afterwards. A detailed account is presented in [12]. Some of these approximate
results have been followed up by probabilists and improved upon [11, 40, 39]. Several of
the classical models from statistical physics that were traditionally studied on lattices, have
been transferred to a random graph setting. For instance, several scaling limits have been
rigorously derived for first passage percolation on random graphs [10]. Competing first
passage percolation on random graphs is also an emerging research topic [16].

Some promising developments have been made in the mathematical epidemiology liter-
ature. Anderson [45] provided limits theorems for a discrete-time random graph epidemic
model. However, he made stringent assumptions on the degree sequence of the underlying
random graph, for example, finiteness of (4+δ)-th moment, for some δ > 0. The work of Erik
Volz in [41] aroused much interest among probabilists. He presented ODE limits for an SIR
model on random graphs. Decreusefond et al. [43] later on provided rigorous proof of Volz’s
results. They considered configuration model random graphs and summarised the epidemic
process into three measure-valued equations. Several works with the aim to provide laws of
large numbers-type scaling limit came out in quick succession and under varying sets of tech-
nical assumptions. For example, [46, 47] assume uniformly bounded degrees, [44] assumes
degree of a randomly chosen susceptible vertex is uniformly integrable and the maximum
degree of the initially infected vertices is not too large. Recently [42] derived similar laws
of large numbers for stochastic SIR on a multilayer configuration model assuming finiteness
of the second moment of the underlying degree distribution. Two recent works developed
diffusion approximations of such epidemic processes on random graphs. A functional central
limit theorem for a susceptible-infected (SI) process on configuration model random graphs
was developed in [2]. On the other hand, [1] developed a diffusion approximation for a
partner model (susceptible-infected-susceptible) with random formation and dissolution of
partnerships.

Recent developments in the context of biochemical reactions and social networks merit
a mention. While there is no explicit graph structure (due to the classical well mixing
assumption) in the biochemical reaction setting, the literature is rich with plentiful math-
ematical results (including scaling limits) for the underlying Markovian population model,
making use of probabilistic tools. See, for example, [49, 48]. On the social networks side,
emerging complex adaptive behaviour has received much attention. These works do not
directly address the research questions of this workshop, but do reveal connections to game
theory, agent-based models [52].
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3 Presentation Highlights

Epidemics on networks

Grzegorz Rempala: Survival dynamical systems on random graphs.
The idea of a survival dynamical system (SDS) is to apply aggregated dynamics of

a macro model at the level of an individual agent. SDS may be also viewed a limit of
agents’ dynamics obtained when replacing individual’s random hazard function with its
large volume limit. Under this second interpretation it is relatively simple to obtain an
extension of the classical mass-action SDS to a configuration model random graph and
to provide some basic results allowing for estimating the underlying epidemic parameters
from micro-level data. As it turns out, in a certain class of degree distributions the SDS
model takes a particularly simple from and its statistical analysis is only moderately more
complicated than the classical mass- action SDS as given by the standard SIR equations.

Eban Kanah and Wasiur KhudaBukhsh: Population-level survival analysis
from individual-level transmission models (Parts 1-2).

In recent paper [55] it was shown that solutions to Ordinary Differential Equations
(ODEs) describing the large-population limits of Markovian stochastic compartmental dy-
namical systems could be interpreted as survival or hazard functions when analyzing data
from the individuals sampled from the population. An earlier paper by Kenah [54] showed
that likelihoods from individual-level mass-action transmission models simplify in the limit
of a large population when the depletion of susceptibles is negligible. In their presentations
the speakers described generalizations of these results by deriving population-level survival
and hazard functions from explicit individual-level models. This approach allows, for in-
stance, for population-level survival analysis methods to be applied to a more general class
of epidemic models and allows the asymptotic pairwise likelihoods to be applied throughout
the course of an epidemic. In practice, this will provide a logically consistent framework
for the analysis of both high-resolution outbreak investigations or household studies and
population-level surveillance or sentinel data.

Samuel Scarpino: Behaviour-induced phase transitions in contagion models
on networks.

Seemingly trivial modifications to the classical model of contagion spreading can dra-
matically alter its phenomenology. For example, discontinuous phase transitions can occur
due to complex or interacting contagions, accelerating transmission and hysteresis loops can
occur when individuals modify their behaviour after becoming infectious, and double phase
transitions can emerge in the presence of asymmetric percolation. Scarpino presented recent
theoretical work on the effect of behaviour on contagion spreading and discussed empirical
support for such new models. His findings nicely demonstrate the inherent complexity of
biological contagion and we believe that his methods will advance the emerging field of
disease forecasting.

Piet Van Mieghem: Epidemic Spread on Networks
Epidemic models are increasingly applied in real-world networks to understand various

kinds of diffusion phenomena (such as the spread of diseases, emotions, innovations, failures
in economic networks) or the transport of information (such as news, memes in social on-
line networks and activity in functional human brain networks). Van Mieghem focused in
his talk on Susceptible-Infected-Susceptible (SIS) epidemics on networks. SIS Markovian
epidemics on a given, fixed graph is one of the simplest ”local rule - global emergence”
models and allow for a remarkable level of mathematical analysis. Van Mieghem provided
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a review of known results for the SIS model in continuous time and give new mean field
approximation results extending classical pair approximations.

Joel Miller: Contagion spread in clustered and unclustered small world net-
works

He first discussed a class of random spatial networks and show that they have “small
world”-like properties, but the level of clustering is tunable and can be made it arbitrarily
small. In some limits we are able to derive a system of integro-differential equations which
allows us to accurately predict both the temporal and spatial dynamics of SIR disease. These
equations can be used to determine when the network behaves like a small world network
with significant long-range transmissions and when the dynamics are dominated by the
short-range transmission. Interestingly, the ”small-world” properties of disease spread can
exist even in the limit of no clustering, and thus the concept of a small-world network is
determined more by whether the network has a combination of short-range and long-range
connections than whether the network has many clustered connections.

Tom Britton: Epidemics in structured communities with social distancing
Britton’s talk was an example for recent works in the domain of changing networks. He

again considered epidemics on large, structured networks. Infectious individuals spread the
disease to each of their susceptible neighbors, independently, at rate λ, and each infectious
individual recovers and becomes immune at rate γ. The social distancing is modeled by
each susceptible who has an infectious neighbor rewires away this individual to a randomly
chosen individual at rate ω. The main result of Britton is surprising and says: the rewiring
is rational from an individual perspective in that it reduces the risk of being infected, but
at the same time it may be harmful for the community at large since the outbreak may get
bigger compared to no rewiring (ω = 0).

David Sivakoff: The Contact Process with Avoidance
Sivakoff’s talk also considered time-varying networks. The classical contact process is

a stochastic process on the vertices of a graph, which is a discrete, spatial model for the
spread of a disease. The state of the contact process at time t is given by an infected
subset of the vertices of the graph. At rate 1, each infected vertex becomes healthy, and
therefore susceptible to reinfection. At rate λ > 0, each edge between an infected vertex
and a healthy vertex transmits the infection, thus infecting the healthy vertex. The contact
process has been thoroughly analyzed on the integer lattices and regular trees, where it
is well-known to exhibit a phase transition: for large lambda, epidemics persist, while
for smaller lambda, all vertices are eventually healthy. More recently, the community has
made progress in analyzing the behavior of the contact process on (finite) complex networks,
where epidemics may persist for all λ > 0 on graphs with ‘heavy-tailed’ degree distributions.
Sivakoff presented recent progress on a version of the contact process in which the edges
of the graph are also dynamic: at rate α, each edge from an infected vertex to a healthy
vertex will deactivate; the edge will become active again when the infected vertex becomes
healthy, and only active edges can transmit the infection. This emulates avoidance of
infected individuals by healthy individuals. Sivakoff showed that the long-time qualitative
behavior of this model may or may not differ from the classical contact process, depending
on the underlying network topology.

Models and methods from physics

Souvik Dhara: Critical behavior for percolation on graphs with given degree
He discussed the critical behavior of percolation on finite random networks. In a seminal
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paper, Aldous (1997) identified the scaling limit for the component sizes in the critical
window of phase transition for the Erdos-Renyi random graph (ERRG). Subsequently, there
has been a surge in the literature, revealing several interesting scaling limits of these critical
components, namely, the component size, diameter, or the component itself when viewed as
a metric space. Fascinatingly, when the third moment of the asymptotic degree distribution
is finite, many random graph models have been shown to exhibit a universality phenomenon
in the sense that their scaling exponents and limit laws are the same as the ERRG. In
contrast, when the asymptotic degree distribution is heavy-tailed (having an infinite third
moment), the limit law turns out to be fundamentally different from the ERRG case and in
particular, becomes sensitive to the precise asymptotics of the highest degree vertices. In
this talk, we will focus on random graphs with a prescribed degree sequence. We start by
discussing recent scaling limit results, and explore the universality classes that arise from
heavy-tailed networks. Of particular interest is a new universality class that arises when
the asymptotic degree distribution has an infinite second moment. Not only it gives rise
to a completely new universality class, it also exhibits several surprising features that have
never been observed in any other universality class so far. This is based on joint works with
Shankar Bhamidi, Remco van der Hofstad, Johan van Leeuwaarden and Sanchayan Sen.

Cristian Giardina: Quenched and annealed Ising models on random graphs
Giardina considered the ferro-magnetic Ising model in a setting where the regular spatial

structure is replaced by a random graph, which is often used to model complex networks.
He discussed both the case where the graph is essentially frozen (quenched setting) and the
case where instead it is rapidly changing (annealed setting). He showed that quenched and
annealed case may have different critical temperatures, provided the graph has sufficient
inhomogeneity. He also showed how universal results (law of large numbers, central limit
theorems, critical exponents) are affected by the disorder in the spatial structure. The
presented results emerged from collaboration with .H. Can, S. Dommers, C. Giberti, R.van
der Hofstad and M.L.Prioriello.

Thilo Gross: : A master-stability-function approach to diffusive instabilities
in a meta-foodweb

Gross presented work on diffusion-driven pattern formation in a class of multilayer
systems, where different layers have the same topology, but different internal dynamics.
Thereby agents are assumed to disperse within a layer by undergoing random walks, while
they can be created or destroyed by reactions between or within a layer. Gross showed
that the stability of homogeneous steady states can be analyzed with a master stability
function approach that reveals a deep analogy between pattern formation in networks and
pattern formation in continuous space. He considered a generalized model of ecological
meta-food webs as an application. This fairly complex model describes the dispersal of
many different species across a region consisting of a network of individual habitats while
subject to realistic, nonlinear predator-prey interactions. In this example, the method
reveals the intricate dependence of the dynamics on the spatial structure. The ability of
the proposed approach to deal with this fairly complex system highlights it as a promising
tool for ecology and other applications.

Silvio C. Ferreira: Eigenvector localization, dynamical correlations and epi-
demic thresholds on random networks with degree correlations

Ferreira presented a comparison between large-scale stochastic simulations and mean-
field theories for the epidemic thresholds and prevalence of the SIS model on networks with
power-law degree distributions and degree correlations. The simulation confirm the vanish-
ing of the threshold regardless of the correlation pattern and degree exponent. The thresh-
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olds are compared with heterogeneous mean-field (HMF), quenched mean-field (QMF) and
pair quenched mean-field (PQMF) theories where the degree correlation patterns are explic-
itly considered. The PQMF, which additionally reckons dynamical correlations, outperforms
the other two theories and its level of quantitative success depends on the type of degree
correlation (assortative, disassortative or uncorrelated). Furthermore, Ferreira reported on
the strong correlation between the success of PQMF theory and the properties of the prgin-
cipal eigenvector such as the inverse participation ration (IPR) and the spectral gap. If the
IPR is large and tends to a finite value at the limit of large networks the PQMF predictions
deviate from numerical simulations. Otherwise, if the IPR is small, PQMF theory shows an
excellent match with the simulations. Finally, Ferreira compared the epidemic prevalence
near to the critical point for both the QMF theory and exact results.

Jan Nagler: Population growth, ergodicity breaking and optimal stategies in
ecosystems and games Nagler introduced the notion of ergodicity breaking in various
situations ranging from population growth in ecological foodwebs to climate prediction and
discussed common pitfalls if one ignores ergodicity breaking. Mathematically, ergodicity
breaking means that one cannot, in general, commute the evolution operator of a dynamical
system with random parameters and the expectation operator. For instance, if a population
model is embedded in a random environment, the mean growth dynamics cannot be obtained
by running the growth dynamics with the mean environment. Nagler goes on to discuss the
consequences of ergodicity breaking in evolutionary game theory and illustrates how new
optimal strategies can be found if one accounts for ergodicity breaking.

Games on graphs

Rick Durrett: ODE limits for particle systems on graphs
Durrett presented results voter model with perturbations in the sense of Cox, Durrett,

and Perkins. He discussed results for two examples: evolutionary games with weak selection
and the latent voter model in which individuals who adopt a new technology (e.g. buy an
iPhone) have a latent period in which they will not change their state. These examples
were analyzed in joint work with Ted Cox (EG) and Ran Huo (LVM).

Peter Caines: Graphon Mean Field Games and the GMFG Equations
Caines presented methods for the analysis, design and control of very large networks

linking dynamical agents. The emergence of the graphon theory of large networks and their
infinite limits has recently enabled the formulation of a theory of the centralized control
of dynamical systems distributed on asymptotically infinite networks. Furthermore, the
study of the decentralized control of such systems has been initiated leasding to Graphon
Mean Field Games (GMFG) and the GMFG equations are formulated for the analysis of
non-cooperative dynamical games on unbounded networks. In Caines’ talk the GMFG
framework was presented followed by the basic existence and uniqueness results for the
GMFG equations, together with an epsilon-Nash theorem. The latter relates the infinite
population equilibria on infinite networks to that of finite population equilibria on finite
networks.

Chemical and gene networks

Jae Kyoung Kim: Accurate reduction of multiscale biochemical reaction net-
works.

Kim’s talk was centered around biochemical reaction networks (BRNs) with disparate
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timescales. The stochastic simulations of such multiscale BRNs are prohibitively slow due
to the high computational cost for the simulations of fast reactions. One way to resolve this
problem is replacing the fast species with their quasi-steady state (QSS): their stationary
conditional expectation values for given slow species. Kim described types of BRNs which
can be reduced by deriving an exact QSS even in the presence of non-linear reactions.
Furthermore, in the case when the exact QSS cannot be derived, Kim described how we
could derive the approximate QSS and illustrated how the accurately reduced BRNs could
be used to identify molecular mechanism underlying robust circadian rhythms and predict
accurate drug clearance in the liver.

Konstantin Mischaikow: The DSGRN Database for Dynamics of Gene Reg-
ulatory Networks

A common goal in the domain of systems and synthetic biology is to understand the
relationship between design and function of gene regulatory networks. This is a significant
challenge for several reasons. Typically understanding the behavior of a gene regulatory
network means understanding the associated dynamics. Traditionally this requires having
an acceptable nonlinear model, knowledge of parameter values, and knowledge of initial con-
ditions, all of which are difficult to obtain in the setting of complex multi-scale problems.
To circumvent these challenges the speaker has developed a novel approach to nonlinear
dynamics based on order theory and algebraic topology. This method allows for efficient
computations of rigorous combinatorial/algebraic topological descriptions of the global dy-
namics over large ranges of parameter space. As a consequence, given a regulatory network,
we are able to construct a database describing all the associated dynamics. The talk dis-
cussed the theory behind this tool and demonstrated how it could be applied to some specific
examples.

Daniel Linder: Inferring sparse regulatory networks in high dimensions
Inferring gene regulatory networks from high-throughput omics data is a challenging

statistical and computational problem. Classical inferential methods are known to break
down due to the curse of dimensionality. Linder presented work his group has done in this
area of statistical inference, and focused on recent work to learn the network structure in
dynamical systems using Bayesian hierarchical modeling.

Miscellaneous mathematical analyses

Thomas G. Kurtz: Genealogies for stochastic population models.
Stochastic models of populations have a long history beginning with branching processes

and continuing with models in population genetics and models of the spatial distribution
of populations. At the same time, models of population genealogies were developed in the
population genetics literature. Work with Peter Donnelly [53] showed how to simultane-
ously construct models that include both the forward in time evolution of the population
distribution and the backward in time genealogy starting at any time point in the forward
in time evolution. These “lookdown” constructions were essentially restricted to neutral
models, that is, models in which birth rates, offspring distributions, and death rates do
not depend on the types or locations of the individuals in the population. Following some
earlier preliminary results, work with Eliane Rodrigues [56] gave lookdown constructions
for general Markov branching processes in which the birth rates, offspring distributions,
and death rates can depend on the location/type of the individual. Extensions of these
lookdown/genealogical constructions to very general Markov population models, to appear
in a forthcoming paper with Alison Etheridge, were discussed.
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Sayan Banerjee: Joining the shortest queue, non-elliptic reflected diffusions
and stationarity

In his talk Banerjee, considered a system of N parallel single-server queues with unit-
exponential service time distribution and a single dispatcher where tasks arrive as a Poisson
process of rate l(N). When a task arrives, the dispatcher assigns it to one of the servers
according to the Join-the-Shortest Queue (JSQ) policy. Eschenfeldt and Gamarnik (2015)
established that appropriately scaled functionals of the queueing network under the JSQ
policy converge weakly to associated functionals for a certain non-elliptic reflected diffusion
process as N grows. Banerjee talked about analyzing the detailed behavior of the steady
state of this non-standard diffusion process using tools from renewal theory. The tails and
bulk behavior of the steady state distribution and sample path fluctuations of the diffusion
process were explored. He also showed that the steady state shows a stark difference in
behavior between two regimes governed by a system parameter. The presented results are
based on joint work with Debankur Mukherjee.

Amarjit Budhiraja: On Some Calculus of Variations Problems for Rare
Event Asymptotics

The theory of large deviations gives decay rates of probabilities of rare events in terms
of certain optimal control problems. In general these control problems do not admit simple
form solutions and one needs numerical methods in order to obtain useful information. In
his talk, Budhiraja presented some large deviation problems where one can use methods of
calculus of variations to give explicit solutions to the associated optimal control problems.
These solutions then yield explicit asymptotic formulas for probability decay rates in several
settings. The case of the Configuration Model was discussed in detail.

Laurent Decreusefond: Random walk on simplicial complexes
In his talk Decreusefond considered random walks on simplicial complexes, also called

hypergraphs, using some notions of topological algebra. It was shown that the transition
matrix of this random walk was related to the higher order Laplacian, the generalization of
graph Laplacian. He analyzed the limit behavior of this RW when the number of points in
the simplicial complex tends to infinity.

4 Scientific Progress Made and Meeting Outcomes

The workshop brought together individuals from a diverse communities of international
researchers. The main topic was epidemics on networks but models from physics such as
percolation and the Ising model and the structure of various types of chemical and genetic
networks were discussed as well. It is stimulating for researchers to see new perspectives on
problems that they have previously studied. Several new collaborations were started and
further progress in various areas is anticipated as a direct result of discussions during the
workshop. Future meetings, like for instance the upcoming one in February, 2020, in CIRM
(Marseille, France see https://www.cirm-math.fr) will provide opportunities for continued
interactions. Some examples of scientific progress and specific outcomes are provided below.

• In the area of network models for infectious diseases there has been a realization
during the conference that some of the recent results developed for non-Markovian
epidemics in part of the reaction networks community have been in fact also recently
reported in the communicable diseases literature although in a less mathematically
formal way. In particular, extending the arguments presented in [57] allows to show
that the non-Markovian results discussed in several talks at the workshop (Kenah,



10

Miller, KhudaBukhsh) provide a nice connection and an extension of some earlier
work reported e.g. in [58].

• A remarkable example of new contact came from the talks of Tom Britton and David
Sivakoff, who talked in back-to-back presentations about the impact of link deacti-
vation (susceptibles temporarily severing their contact with infecteds) on the spread
of an infection. Britton focussed on the paradoxical result that link deactivation can
cause the overall fraction of people who get infected to increase. Sivakoff concentrated
on giving rigorous proofs of the existence of phase transitions. His collaborator Matt
Wascher was a participant in the 2019 AMS Math Research Community held June
9-15 where this model was extensively discussed along with the version in which sus-
ceptibles connected to an infected can rewire their connection to another individual.

• Further progress was made in accumulating mathematical results developed by dif-
ferent communities and discovering new ones. Interesting theoretical results were
presented that are likely to find new applications (eg in modeling vaccination and
social distancing processes), which, in turn, should give rise to interesting new theo-
retical questions. This synergy is necessary to make sure the subject, as it grows into
a mathematically rigorous discipline, remains equally appealing from both theoretical
and applications points of view.

• The participants also explored new potential research domains. As discussed at the
workshop, there has been extensive work on chemical reaction networks (CRNs) un-
der mass-action assumption. The questions were posed about possible explicit graph
structure comes into play in CRNs theory. Introduction of random graphs (possibly
geometric) would help us refine all existing results and potentially improve our un-
derstanding of the chemical reaction systems. ii) Percolation on random graphs has
emerged as an interesting research topic in the recent times [51, 50]. However, its
possible connections with general dynamical processes on random graphs, especially
from a non-equilibrium point of view, are not fully understood yet and hold great
promise for future research.

Most rigorous works in the last few years [43, 46, 46, 44, 42] in epidemiological context
seem to be followed by probabilists and mathematical epidemiologists, but their application
to computer science in the context of spread of viruses, although reasonably achievable,
does not seem to have gathered momentum. On the other hand, we are not aware of many
rigorous efforts tailored to more complicated dynamical systems arising from, for example,
peer-to-peer systems in computer science. During the workshop, several interesting specific
open problems were identified that require new mathematical ideas. For instance, networks
in which the structure of the network and the states of the vertices coevolve.
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Erdős-Rényi random graph, Combin. Probab. Comput., 2011.

[7] S. Bhamidi, R. van der Hofstad, and J. van Leeuwaarden, Novel scaling limits for
critical inhomogeneous random graphs, Annals of Probability, 2012.

[8] S. Dhara, R. van der Hofstad, J.S.H. Leeuwaarden, and S. Sen, Critical window for
the configuration model: finite third moment degrees, Available at arXiv:1605.02868
[math.PR], Preprint Preprint 2016.

[9] S. Dhara, R. van der Hofstad, J.S.H. Leeuwaarden, and S. Sen, Heavy-tailed configu-
ration models at criticality, Preprint 2016.

[10] Remco van der Hofstad, Stochastic processes on random graphs, 2017.

[11] Rick Durrett, Random Graph Dynamics, Cambridge University Press, 2011.
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